

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

GENERATION OF DEPARTMENT OF DEFENSE

ARCHITECTURE FRAMEWORK (DODAF) MODELS

USING THE MONTEREY PHOENIX BEHAVIOR

MODELING APPROACH

by

Joanne D. Pilcher

September 2015

Thesis Advisor: Kristin Giammarco

Second Reader: Walter E. Owen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

GENERATION OF DEPARTMENT OF DEFENSE ARCHITECTURE

FRAMEWORK (DODAF) MODELS USING THE MONTEREY PHOENIX

BEHAVIOR MODELING APPROACH

5. FUNDING NUMBERS

6. AUTHOR(S) Pilcher, Joanne D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Center Pacific

53560 Hull Street

San Diego, CA 92152-5001

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

 The Department of Defense (DOD) has struggled with the systems development, integration and interoperability

for more than 30 years. Despite the Department of Defense Architecture Framework (DODAF) compliance

requirement initiated 20 years ago to address these concerns, DOD agencies continue to struggle to deliver

interoperable systems required for operations. The Monterey Phoenix (MP) approach shifts the paradigm underlying

these DODAF views to focus on system behaviors and interactions rather than component functionality and the data

flows between them. Although robust DODAF tools are available for model documentation, the MP Analyzer tool

enables the system architect to reduce design complexity while quickly and easily exposing architectural flaws prior

to implementation.

 This research defines DODAF models that can be generated using the MP approach to realize MP benefits such

as automatic scenario generation and comply with DOD guidance. Using criteria established in this research, 16 of the

51 total DODAF models from five of the eight viewpoints are produced using data available in the MP approach. The

value proposition to DOD programs is the ability to intercept design errors before they become costly system failures

or rework requirements. Future research can validate the DODAF model generation from MP as it matures.

14. SUBJECT TERMS

business process modeling notation, BPMN, Monterey Phoenix, department of defense architecture

framework, DODAF, systems engineering, systems, systems architecting, architecture, validation,

verification

15. NUMBER OF

PAGES
131

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

GENERATION OF DEPARTMENT OF DEFENSE ARCHITECTURE

FRAMEWORK (DODAF) MODELS USING THE MONTEREY PHOENIX

BEHAVIOR MODELING APPROACH

Joanne D. Pilcher

Civilian, Space and Naval Warfare Systems Center Pacific

B.S., Virginia Tech, Blacksburg, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

September 2015

Author: Joanne D. Pilcher

Approved by: Kristin Giammarco, Ph.D.

Thesis Advisor

Walter E. Owen, DPA

Second Reader

Ronald Giachetti, Ph.D.

Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Department of Defense (DOD) has struggled with the systems development,

integration and interoperability for more than 30 years. Despite the Department of

Defense Architecture Framework (DODAF) compliance requirement initiated 20 years

ago to address these concerns, DOD agencies continue to struggle to deliver interoperable

systems required for operations. The Monterey Phoenix (MP) approach shifts the

paradigm underlying these DODAF views to focus on system behaviors and interactions

rather than component functionality and the data flows between them. Although robust

DODAF tools are available for model documentation, the MP Analyzer tool enables the

system architect to reduce design complexity while quickly and easily exposing

architectural flaws prior to implementation.

This research defines DODAF models that can be generated using the MP

approach to realize MP benefits such as automatic scenario generation and comply with

DOD guidance. Using criteria established in this research, 16 of the 51 total DODAF

models from five of the eight viewpoints are produced using data available in the MP

approach. The value proposition to DOD programs is the ability to intercept design errors

before they become costly system failures or rework requirements. Future research can

validate the DODAF model generation from MP as it matures.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1

1. Systems ..2
2. Systems Engineering ..3

3. Systems Architecting ...4
4. Systems Architecting and Systems Engineering5
5. Systems Architecture Approaches..7

B. PROBLEM STATEMENT ...8
C. RESEARCH QUESTIONS ...9

D. SCOPE AND OBJECTIVE ..9
E. BENEFITS OF STUDY ...10

II. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK11
A. HISTORY ...11

1. Authority ...13
2. Conformance ..13

B. OVERVIEW: VIEWPOINTS AND MODELS..14
C. COMMUNICATING ARCHITECTURES ...22

III. MONTEREY PHOENIX BEHAVIOR MODELING APPROACH27

A. INTRODUCTION..27
B. LANGUAGE ..33

C. MP PROTOTYPES ...35

IV. CASE STUDY ..41

A. INTRODUCTION..41
B. DERIVED MP MODEL(S) ...43

1. Capability Taxonomy: CV-2 ..44
a. Method of Conversion ...44
b. CV-2 MP Code ..45

c. CV-2 MP Visualizations..47
d. CV-2 MP Summary ...49

2. Resource Flow Diagrams: OV-2, SvcV-2, and SV-249
a. Method of Conversion ...50
b. SV-2 MP Code ...51

c. SV-2 MP Visualizations ..53
d. SV-2 (OV-2 and SvcV-2) MP Summary55

3. Organizational and Project Relationship Charts: OV-4 and

PV-1 ...56

a. Method of Conversion ...57
b. OV-4 MP Code ..57
c. OV-4 MP Visualizations ...58
d. OV-4 and PV-1 MP Summary ..59

4. Operational Activity Models: OV-5a and OV-5b59

 viii

a. Method of conversion..60

b. OV-5b MP Code ..60
c. OV-5b MP Visualizations ...62

d. OV-5b MP Summary ...63
5. State Transition Description: OV-6b, SvcV-10b, and SV-10b63

a. Method of Conversion ...64
b. SvcV-10b MP Code ...65
c. SvcV-10b Visualizations ...66

d. SvcV-10b Summary ...67
6. Operational, Services and Systems Event-Trace Descriptions:

OV-6c, SvcV-10c, and SV-10c ...67
a. Method of Conversion ...68
b. OV-6c MP Code – Final ...73

c. OV6-c MP Visualizations..76
d. OV-6c (SvcV-10c and SV-10c) MP Summary81

7. Services and Systems Functionality Description: SvcV-4/SV-4: ..82

a. Method of Conversion ...83
b. SvcV-4 MP Code ...83
c. SvcV-4 MP Visualizations ..84

d. SvcV-4 and SV-4 Summary ..85

V. CONCLUSIONS ..87

VI. RECOMMENDATIONS ...91

APPENDIX A. SIMPLIFIED MP CODE FOR EXAMPLE VISUALIZATIONS93

APPENDIX B. BASELINE DODAF OV-6C USE CASE ..95
A. BASELINE MP CODE USE CASE ...96
B. BASELINE MP VISUALIZATIONS FROM EAGLE6102

LIST OF REFERENCES ..105

 ix

LIST OF FIGURES

Figure 1. System of systems example for an aircraft system (from INCOSE 2010).3
Figure 2. Diagram of systems architecture definition (from Vaneman 2014, 3-3-6,

12, 14-15) ...5
Figure 3. DODAF historical timeline. ...12
Figure 4. DODAF has eight viewpoints (from DOD 2015b, 10).14

Figure 5. Example of a complex, ill-defined, unverifiable DODAF SV-2.25
Figure 6. Separation of system behaviors and system interactions. Events/activities

are shown as a1, b1, n1, … a4, b4, n4 (from Giammarco, Farah-Stapleton,

and Auguston 2014). ..30

Figure 7. Mapping of MP concept s to DM2 UPDM, and LML concepts (from

Giammarco and Auguston 2015a). ..32

Figure 8. MP event grammar rule (from Giammarco and Auguston 2015b).33
Figure 9. MP event patterns. ...33
Figure 10. MP event patterns and sample event traces (Auguston 2014).35

Figure 11. Horizontal and vertical orientation graphs generated from Eagle6, at the

time of this writing. ..36

Figure 12. Visualization types available in the MP Analyzer using an example MP

model..37
Figure 13. Screenshot from MP Analyzer prototype tool. ..38

Figure 14. Joint training architecture viewpoints developed using DODAF 2.0 (from

SPAWAR Pacific 2014a). ..42

Figure 15. Joint training capability taxonomy model (DODAF CV-2) (from

SPAWAR Pacific 2015). ...44

Figure 16. MP Analyzer swim lanes, sequence, and force visualizations for CV-2,

MP code version one. ...47

Figure 17. Manipulated MP CV-2 swim lane visualization, MP code version one.48
Figure 18. MP Analyzer swim lanes, sequence and force visualizations for CV-2, MP

code version two. ...48
Figure 19. Manipulated MP CV-2, code version two. ..49

Figure 20. Subset of joint training SV-2. ..50
Figure 21. Revised SV-2 model showing the system behaviors.51
Figure 22. MP swim lanes and sequence visualizations generated from SV-2.54
Figure 23. MP force visualization generated from SV-2. ...55
Figure 24. OV-2 generated from collapse of SV-2 MP ROOT events.56

Figure 25. Example OV-4, organizational relationship chart. ..57
Figure 26. Manipulated MP Analyzer swim lanes visualization for OV-4.59

Figure 27. Joint training activity model (OV-5b), prepare for the exercise (from

SPAWAR Pacific 2013). ...60
Figure 28. MP swim lanes and sequence visualizations for OV-5b.62
Figure 29. MP force visualization for OV-5b. ..63
Figure 30. Order processing state diagram (after Fowler and Scott 1997).64

 x

Figure 32. Four of 60 event trace sequence visualizations generated in MP Analyzer

for OV-6b. ..67
Figure 33. Response mission training thread (after SPAWAR Pacific 2014b).................68
Figure 34. BPMN parallel gateways. ..70

Figure 35. Complete_notifications activity enforces completion of the parallel tasks.70
Figure 36. MP visualizations for parallel events. ..71
Figure 37. Loop event with decision gateway. ..72
Figure 38. Modified BPMN model with disapprove and approve activities.....................73
Figure 39. MP sequence diagram for approval decision. ..77

Figure 40. MP sequence diagram for disapproval. ..78
Figure 41. MP swim lane diagram for approval event trace one with converged

events (model is split in half for visual representation only).79
Figure 42. Corrected MP swim lane diagram for approval event trace (right half of

model is shown for visual representation only). ..79
Figure 43. MP swim lane diagram for disapproval event trace one with converged

events (model is split in half for visual representation only).80
Figure 44. Corrected MP swim lane diagram for disapproval event trace (right half of

model shown for visual representation only). ..80
Figure 45. MP force diagram for approval event trace. ..81
Figure 46. DODAF services functionality description, SvcV-4 (from SPAWAR

Pacific 2015). ...83
Figure 47. MP swim lanes, sequence, and force visualizations generated from SvcV-

4..84
Figure 48. Two valid event trace outcomes (cancelled, delivered) and one invalid

outcome (waiting) discovered using the MP Analyzer.89

Figure 49. Baseline joint training business process model developed using BPMN

(from SPAWAR Pacific 2014b). ...95
Figure 50. Horizontal Eagle6 visualization. ..102
Figure 51. Vertical Eagle6 visualization. ..103

 xi

LIST OF TABLES

Table 1. Summary of DODAF models generated using MP. xvi
Table 2. The architecting and engineering continuum: characteristics of the roles

(after Maier and Rechtin 2009). ...6
Table 3. Skill sets and traits of a systems architect (after Vaneman 2014, 3-3-6, 12,

14-15). ..7

Table 4. Representations for DODAF 2.02 all, capability, and data/information

viewpoints (Department of Defense, Deputy Chief Information Officer

2015, 231), (DOD 2015b, 10), and (Dam 2014). ...15
Table 5. Representations for DODAF 2.0 operational and project viewpoints

(Department of Defense, Deputy Chief Information Officer 2015, 231),

(DOD 2015b, 10), and (Dam 2014). ..17

Table 6. Representations for DODAF 2.0 services and standards viewpoints

(Department of Defense, Deputy Chief Information Officer 2015, 231),

(DOD 2015b, 10), and (Dam 2014). ..19

Table 7. Representations for DODAF 2.0 systems viewpoints (Department of

Defense, Deputy Chief Information Officer 2015, 231) and (Dam 2014).......20

Table 8. Future planned MP enhancements. ..38
Table 9. Evaluation status of DODAF models for MP approach.43
Table 10. BPMN 2.0 definitions and mapping to MP (OMG 2011).69

Table 11. Summary of DODAF models generated using MP. ..88

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AV all viewpoint

BPMN business process modeling notation

CIO Chief Information Officer

COTS commercial off-the-shelf

CRADA cooperative research and development agreement

CV capability viewpoint

DIV data and information viewpoint

DOD Department of Defense

DM2 Department of Defense Architecture Framework Meta Model

DODAF Department of Defense Architecture Framework

GOTS government off-the-shelf

IDE integrated development environment

IDEF0 integration definition for function modeling

INCOSE International Council on Systems Engineering

LML life cycle modeling language

OV operational view

PES physical exchange specification

PV project viewpoint

SOA service oriented architecture

StdV standard viewpoint

SvcV service viewpoint

SV system viewpoint

MP Monterey Phoenix

UML unified modeling language

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The practice of systems architecture is in its infancy as discipline in the systems

engineering community. Many examples of failed systems development efforts exist with

large cost and schedule overruns. The Department of Defense (DOD) has been struggling

with the development, integration and interoperability of its systems for more than 30

years. Twenty years ago, the DOD developed the Department of Defense Architecture

Framework (DODAF) to help improve system development efforts.

Despite the DODAF compliance requirement and software tools to facilitate

model development, DOD agencies continue to struggle in the delivery of quality and

usable systems within the planned costs and schedule. Researchers at the Naval

Postgraduate School (NPS) are using the Monterey Phoenix (MP) approach to shift the

paradigm for architecture development and improve system development outcomes. At

the core of MP is the principle of modeling behaviors and the interactions between them

as the means to early discovery of architecture concerns. This research defines what

DODAF models can be generated using the MP approach thus realizing the many MP

benefits while meeting the DOD program compliance requirements. Additionally, the

research develops the methods of conversion and provides recommendations for

visualization usage and improvements in the MP prototype, the MP Analyzer.

As stated on the Monterey Phoenix website, MP provides an architecture

approach with a focus on system behaviors and the interactions between these behaviors.

System behaviors and interactions are modeled separately, allowing MP to automatically

generate an exhaustive set of use cases at a small scope to identify system behaviors—a

capability unique to the MP approach. This set of use cases provide the modeler the

ability to visually determine the behaviors of the system either intended or unintended. In

addition to the automatic generation of use cases, other advantages of the MP approach,

as described on the MP website, include early assessment of non-functional requirements,

early identification of design flaws with the potential to save costs on rework for errors

found during implementation, support of reusable architectural patterns, ability to

 xvi

integrate with standard notations such as UML and SysML, and the simplicity of the MP

grammar.

DODAF consists of eight viewpoints and 51 related models. Criteria established

in this research narrowed the list of models evaluated:

 the DODAF model is graphically represented;

 the model has implementation of precedence relations;

 the model has the implementation of inclusion relations.

Using these criteria, 16 of the 51 models were evaluated. A case study example of

each model was developed, a method established for conversion of the case study

example to MP, and MP code was developed and executed. Monterey Phoenix-generated

visualizations were evaluated, and a summary of the results documented. Department of

Defense Architecture Framework models can be generated from five of the eight

viewpoints as shown in Table 1.

Table 1. Summary of DODAF models generated using MP.

Viewpoints DODAF Models Generated from MP

All
None

Capability
CV-2

Data and

Information
None

Operational
OV-2, OV-4, OV-5a, OV-5b, OV-6b, OV-6c

Project
PV-1

Services
SvcV-2, SvcV-4, SvcV-10b, SvcV-10c

Standards
None

Systems
SV-2, SV-4, SV-10b, SV-10c

 xvii

While MP is able to generate all of the above models, the current MP Analyzer

prototype visualizations are limited and primarily intended for academic use. Many other

commercial tools present better graphical visualizations with more robust manipulation

capabilities. Modelers may consider using alternative tools as the MP Analyzer prototype

matures. Researchers hope to inspire systems architects, systems engineers, and industry

to adopt the MP approach. With greater adoption of the MP approach, model based

system engineering (MBSE) vendors can extend the MP capabilities and/or incorporate

them in their own tools.

In conclusion, the complexity of today’s systems development efforts demand

better methods and approaches to simplify and improve successful outcomes. Significant

improvements are simply not being realized. MP introduces a new approach to the mix

and the results of this research reveal much promise for improving systems development

through simple, early discovery of behaviors through the generation of an exhaustive set

of use cases (trace events). The MP approach is still under development and planned

extensions are already in development. As such, continued research to study and

transform complex system architectures that are struggling to meet cost, schedule and

performance requirements would be invaluable. Such a study will provide insight on the

potential return on investment that can be realized using the MP approach.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I acknowledge and thank my family, my fellow cohort students, my co-workers,

my employees, my dance moms, my dearest friends, and, last, but not least, the faculty at

Naval Postgraduate School. Professors Kristin Giammarco and Mikail Auguston

provided invaluable Monterey Phoenix guidance and code reviews for this research. I

have learned much on this two-year journey. All of you have contributed directly to my

ability to complete this master’s program by providing me academic guidance, help,

moral support and friendship, and sometimes, just a shoulder to lean on. I look forward to

spending more time with my family and friends in the very near future and tracking the

progression of the Monterey Phoenix approach.

I am most blessed and grateful that my father, who was diagnosed with lung

cancer during the spring quarter of this year, is here to see me graduate. Finally, I thank

the person who has shouldered the majority of the burden of my physical and mental

absence during the past two years, and unselfishly picked up the slack, my dear husband

and best friend, Daniel Pilcher.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

In the original predecessor to The Art of Systems Architecting, published in 1991,

Eberhardt Rechtin opens with this statement: “Architecting, the planning and building of

structures, is as old as human societies—and as modern as the exploration of the solar

system” (Maier and Rechtin 2009, xv).

The building of structures includes the discipline of architecture and civil

engineering and is a widely accepted practice. Building architects and civil engineers

work hand in hand in the development of structures across the globe. Maier and Rechtin’s

(2009) opening statement suggested systems developers applied civil engineering

architecting methods to systems development, inadvertently. Since the first release of

their book, Maier and Rechtin’s (2009) assumption regarding the application of civil

engineering architecting methods to systems architecting continues to be validated

through academic and industry studies. The complexity of systems development drives

the need to apply architecture concepts to today’s systems engineering approaches.

Through the development of structured architecture frameworks and the application of

heuristics, the value of systems architecture to the successful systems implementation

continues to gain credible acceptance in the systems engineering community (Maier and

Rechtin 2009).

Many organizations struggle to understand the distinction between systems

architecting and systems engineering, thus the value of systems architecting is often

questioned. The systems engineering team builds and delivers products. Their value is

easily quantified. Architecture teams create documents, build models, consume resources,

but their value is not always immediately tangible. To understand the partnership

between system architecture and system engineering better, it is necessary to define their

individual elements: system, system engineering, and system architecting.

 2

1. Systems

Systems are everywhere in everyday existence. There are human systems, space

systems, weather systems, software systems, hardware systems, solar systems—and the

list goes on. However, defining “system” proves surprisingly challenging due to the

almost infinite set of objects to which the concept can be applied. As such, many

definitions with varying criteria exist in contemporary literature.

Blanchard and Fabrycky (2011, 3) define a system as “an assemblage or

combination of functionally related parts forming a unitary whole, such as a river system,

or a transportation system.” They classify various elements of a system to be composed

of components, attributes, and relationships. Langford (2012, 369) defines a system as, “a

bounded, stable group of objects exhibiting intrinsic emergent properties that through the

interactions of energy, matter, material wealth, and information provide functions

different from their archetypes.” The International Council on Systems Engineering

(INCOSE) offers two more definitions of system: “a combination of interacting elements

organized to achieve one stated purposes” and “an integrated set of elements, subsystems,

or assemblies that accomplish a defined objective” (INCOSE 2010, 5).

Overall, these definitions reveal the common theme of connecting functions to

form functions that are different when combined in the whole system. Systems can then

be connected or integrated to other systems to form a more complex “system of systems”

as shown in Figure 1.

 3

Figure 1. System of systems example for an aircraft system

(from INCOSE 2010).

2. Systems Engineering

Systems engineering is a relatively new discipline and its emergence appears in

the early to mid-1900s. According to INCOSE, systems engineering originates sometime

in the 1930s. In 1937, a British multi-disciplinary team was established to analyze the air

defense system (INCOSE 2010). In the United States, systems engineering as a discipline

gained recognition during the missile program development during the 1950s (Langford

2012). Like those for systems, the definitions of systems engineering vary.

The INCOSE Systems Engineering Handbook references multiple definitions and

develops its own:

Systems engineering is an interdisciplinary approach and means to enable

the realization of successful systems. It focuses on defining customer

needs and required functionality early in the development cycle,

documenting requirements and then proceeding with design synthesis and

system validation while considering the complete problem: operations,

cost, and schedule, performance, training and support, test, manufacturing,

and disposal. Systems engineering considers both the business and the

technical needs of all customers with the goal of providing a quality

product that meets the user needs. (INCOSE 2010)

 4

Langford (2012, 370) defines systems engineering as:

The character of systems engineering is to create and express ideas and

integrate components into systems that are referred to as products or

services. The essence of systems engineering is to unbound the seemingly

bounded, broaden the concepts to beyond recognition, open the solution

domain to include the ridiculous, and consider the issues and problems in

an abstract space rather than as they are posed or presumed to be real. No

other discipline or field carries with it that worldview.

These two definitions share some common themes. Both definitions define

systems engineering as the broad overview of the development of the entire system,

reaching out beyond typical engineering development boundaries. Systems engineering

embodies thinking about the broader concerns of the system including the customer

needs, the project management concerns, the system life cycle, and the integration of the

system with other systems including its environment.

3. Systems Architecting

Capturing a consistent, single definition of systems architecting is as difficult as

the attempts for defining system and systems engineering. While systems engineering has

been around long enough to acquire its own definitions and recognition as a discipline,

systems architecting is still struggling to distinguish itself from the general architecture

field. Thus, traditional architecture definitions (the building of structures) have been

extended to cover the architecture of systems. Maier and Rechtin (2009) compare the

Webster’s dictionary definition of architecture to their definition, pointing out that the

dictionary definition of architecture tends more towards describing the profession. These

definitions are:

 Webster’s Definition: “The art or science of building; specifically the art

or practice of designing and building structures and esp. habitable ones.”

 Maier and Rechtin’s Definition: “The structure – in terms of components,

connections, and constraints – of a product, process, or element.”

Langford defines architecture as the “conceptual and logical structures of objects

and processes (and their logical derivatives, e.g., functions or procedures, respectively)”

(Langford 2012).

 5

Finally, DODAF Version 1.0 offers the following systems architecture definition,

also depicted graphically in Figure 2, “the fundamental organization of a system

embodied in its components, their relationships to each other, and to the environment,

and the principles guiding its design and evolution” (Department of Defense, Deputy

Chief Information Officer 2004, ES-1).

Figure 2. Diagram of systems architecture definition (from Vaneman 2014, 3-

3-6, 12, 14-15)

Naturally, all three definitions include “structure” as a key element of

architecture. Another common theme is the requirement for “connections” or

“relationships.” Both Maier and Rechtin’s and Langford’s definitions classify “process”

as part of the structure, which is an important differentiator in defining systems

architecture vice building architecture. Systems architecture builds the structure of

processes to form a system.

4. Systems Architecting and Systems Engineering

Systems engineers and developers are frequently at odds with the system

architects. They may believe that the architecture model development is a superfluous

function that can be streamlined and created during the systems engineering processes.

However, throughout history, there have been many architecture-based disasters that cost

human lives but also examples of successful product-based architectures. According to

Maier and Rechtin, the engineering of a system is a deductive process focused on things

that can be measured and using analytics that are based on mathematics and science. On

the other hand, they classify architecting as an inductive process focused mostly on things

that cannot be quantitatively measured and relying on heuristics and guidelines developed

from experiences. However, systems architecting and its practitioners provide necessary

and distinct value towards the development of systems.

 6

A strong and complementary codependence between architecting and engineering

throughout the life cycle of systems development is shown in Table 1.

Table 2. The architecting and engineering continuum: characteristics of the

roles (after Maier and Rechtin 2009).

Each characteristic listed above describes the focus area of concern for the

architect versus that of the engineer. The middle column highlights the areas of common

ground between the two disciplines. Warren Vaneman’s September 2015 lecture,

“Introduction to System Architectures” provides additional insights into the required

characteristics and skills of a system architect, specifically citing from Alexander H.

Levis and Lee W. Waganhals to argue, “the architect is NOT the systems engineer. The

role of the architect and the role of the systems engineer should not be taken by the same

person.” Table 2 identifies the ideal skills sets and traits of a good systems architect as

defined by Vaneman.

 7

Table 3. Skill sets and traits of a systems architect (after Vaneman 2014, 3-

3-6, 12, 14-15).

In summary, architecting and engineering skills, concerns, methods, and purposes are

different and, yet, complementary.

5. Systems Architecture Approaches

The evolution of systems architecture requires the development of approaches,

methods, and tools to support the development of the system architect’s models and

products. The DOD developed the DODAF to address these needs. In 2004, DODAF

adopted as a requirement for systems development by the DOD Chief Information

Officer (CIO). The framework describes viewpoints and models that a systems architect

may choose based on the requirements of their particular systems project. Conformance

criteria exist for DODAF; however, these criteria only provide recommendations for

model representations, not the tools or methods to implement them. Industry has

developed a variety of architecture tools to support a wide array of model types and

methods.

 8

At the NPS, research is ongoing in the development of a formal architecture

approach called Monterey Phoenix to be used to model system behaviors and business

processes. The MP approach provides software and systems architects a simple event

grammar to model their architectures and evaluate behaviors of the system. The purpose

of MP is to “specify, then verify and validate the correct behavior of a system” at the time

that the system architecture is being developed (Giammarco and Auguston 2015a). By

focusing on the system behaviors in the architecture models, MP exposes unintended

behaviors in the systems architecting vice systems development phase. Using MP to

model their systems, architects can use its simulation capability to generate a robust set of

use cases to evaluate the behaviors of their model (NPS 2015).

B. PROBLEM STATEMENT

Conformance, to the maximum extent possible, with the DODAF is expected for

architectures developed in the DOD (DOD 2015a, 4-5). To promulgate the value, usage,

and acceptance of the MP approach, a case study mapping DODAF models to MP

visualizations determines what MP models satisfy the following DODAF conformance

criteria from the DODAF Version 2.02 (Department of Defense, Deputy Chief

Information Officer 2015, 231):

 The data in a described architecture is defined according to the DM2 concepts,

associations, and attributes.

 The architectural data is capable of transfer in accordance with PES (physical

exchange specification). (Department of Defense, Deputy Chief Information

Officer 2015, 231)

The ability to use MP-generated models to satisfy DODAF guidelines enables DOD

architects to use the approach as a single capability to create, document, and

communicate their models.

While DODAF tools are available for model documentation, the MP approach

provides a simple grammar and tool that enables the system architect to reduce design

complexity while quickly and easily exposing architectural flaws prior to

implementation. The Monterey Phoenix website defines the main principles and benefits

of the approach (Giammarco and Auguston 2015c). As stated on the website, MP

 9

provides an architecture approach with a focus on system behaviors and the interactions

between these behaviors. System behaviors and interactions are modeled separately

allowing MP to automatically generate an extensive set of use cases to identify system

behaviors (Giammarco 2015). This set of use cases provide the modeler the ability to

determine visually the behaviors of the system either intended or unintended. In addition

to the automatic generation of use cases, other advantages of the MP approach, as

described on the MP website, include early assessment of non-functional requirements,

early identification of design flaws with the potential to save costs on rework for errors

found during implementation, support of reusable architectural patterns, ability to

integrate with standard notations such as UML and SysML, and the simplicity of the MP

grammar.

C. RESEARCH QUESTIONS

The thesis explores the following research questions:

1. What DODAF viewpoints and models can be derived using the MP

architecture description approach and language?

2. What visualizations could be added to the MP prototype, MP Analyzer, to

enhance usage of the MP approach?

3. Can DODAF views and models be used to demonstrate the strength of MP

to expose high level design errors and unintended system behaviors?

(a) Can an MP Application Programming Interface enable the MP

technology to be used with existing architecture tools to leverage their

feature sets?

(b) Can a fused product be created?

D. SCOPE AND OBJECTIVE

The scope of this research is to apply the MP approach to existing DODAF

models to determine what models can be generated within MP and its prototype tools,

MP Analyzer or Eagle6. The objective is to define methods for converting DODAF

models into MP to leverage the strength of MP capabilities in exposing unintended

system behaviors during the systems architecture phase.

 10

This research uses DODAF models developed for the Joint Training Enterprise

Architecture (JTEA) as a case study where available; otherwise, example models are

developed. Initial research in converting a JTEA business process modeling notation

(BPMN) model (DODAF Operational View-6c) into MP and executing it in the initial

MP prototype, Eagle6, showed the correlation of data between the two modeling

approaches can be used to generate like graphical views. Further refinement of this initial

model expands the BPMN constructs for further correlation of the two approaches. Each

DODAF model is evaluated for potential conversion and generation in MP using

established criteria.

E. BENEFITS OF STUDY

The thesis research benefits the MP project by determining which DODAF model

visualizations can be generated using the MP approach and grammar. Results from this

research will inform implementation of visualizations in the MP prototypes, the MP

Analyzer and Eagle6. The ability of the MP approach to show alignment with existing

and widely used and accepted visualizations will enhance adoption and usage of MP. The

advantages of using MP will benefit the broader systems engineering community by

providing the ability to specify, verify, and validate system behavior during the

architecture-modeling phase of systems development effort (NPS 2015). Conversely,

DODAF models developed using other tool sets can be transformed into the MP grammar

using the methods discovered in this research in the near term.

 11

II. DEPARTMENT OF DEFENSE ARCHITECTURE

FRAMEWORK

A. HISTORY

The DOD has been struggling with successful development, integration, and

interoperability of its systems for more than 30 years. An early example of systems

interoperability was the inability of the United States to locate Soviet Union SCUD

missiles in 1991 during the Gulf War (Dam 2014). Because of the continuing examples

of system failures, the DOD formed the Command, Control, Communications,

Intelligence, Surveillance, and Reconnaissance (C4ISR) Architecture Working Group

(C4ISR AWG) to develop a framework for developing architectures. The intent of the

framework was to provide guidance for the development of systems that were

interoperable and cost effective (Sowell 2006). The C4ISR Architecture Framework

Version 1.0 was developed in June 1996 and version 2.0 was completed in December of

1997. The C4ISR Architecture Framework defined three architecture views: operational,

systems, and technical (Sowell 2006). By February 1998, the Under Secretary of Defense

(Acquisition and Technology), the Acting Assistant Secretary of Defense (C3I), and the

Joint Staff Director of C4 Systems (J6) issued a memorandum mandating the C4ISR

Architecture Framework, Version 2.0 be used in all C4ISR or associated architectures.

However, this memorandum provided guidance only and was only valid for six months

(Dam 2014).

The next major change to the architecture framework came in February 2004 with

the release of DODAF 1.0. Highlights of the changes in this framework included

covering all of DOD not just C4ISR, a more data-centric vice product centric approach,

flexibility in product selection based on the architecture problem, the emphasis on

capabilities rather than requirements, and the inclusion of “Unified Modeling Language

(UML)-like” diagrams (Dam 2014). DODAF 1.0 had four views: all views, operational,

systems, and technical.

DODAF 1.5, released in April 2007, introduced new architectural concepts based

on the emergence of service-oriented architectures. A key change in this version was the

 12

modification of “systems views” to “systems and services” views. In May 2009, DODAF

2.0 was released changing “views” to “viewpoints, “products” to “models,” separating

“system and services” views to “system viewpoints” and “service viewpoints,” and

adding three additional viewpoints (for a total of eight viewpoints): capability, data and

information, and project (Dam 2014).

DODAF 2.02 was released in August 2010 and there have been three incremental

updates with the latest one being DODAF 2.02 Change 1 released in January 2015. Some

changes in this release include updating the “DODAF conformance to four levels

(conceptual, logical, physical, and semantic),” technical edits to model descriptions,

simplification of information resource flows and associations, and refinement on the

meaning of “services,” and various clarifications and corrections. For a full listing of the

changes, please see the DODAF Version 2.02, Change 1, Volume 1: Overview and

Concepts, Manager’s Guide (DOD 2015a, 4–5). Figure 3 summarizes the DOD timeline

for the development of the architectural frameworks and the Clinger-Cohen Act, which

set the stage for enforcement of the development and maintenance of system architectures

(DOD 2015a, 4–5).

Figure 3. DODAF historical timeline.

 13

As DODAF approaches its 20
th

 anniversary, DOD project managers, system

engineers, and architects continue to struggle to develop systems successfully.

Architecting is still in its infancy in comparison with other engineering disciplines. As

such, the best methods and approaches for architecting today’s complex systems have yet

to be discovered. DODAF has 51 different models that projects may or may not use that

can be implemented in large number of standards, formats, and tools by a workforce with

varying levels of expertise. Almost as in a perfect storm, when all these factors combine,

a complex and large number of architecture models are built, shoved into DOD required

documentation, and then put on the shelf and never used. To improve the art and science

of architecting, methods for simplifying and unifying architecture methods and

approaches must continue to evolve.

1. Authority

The C4ISR Architecture Framework was originally released with a memorandum

that provided for usage of the framework as guidance (Sowell 2006). As such, DOD

agencies were not required to develop C4ISR architectures for systems development

efforts. In 1996, the Clinger-Cohen Act was passed to transform the acquisition and

management of IT by requiring more rigor and structure in the processes. The DOD

Chief Information Officer must provide the oversight required to ensure that all IT

systems are “interoperable, secure, properly justified, and contribute to mission goals”

(DAU 2015). The DODAF allows the DOD Chief Information Officer to support this

law, follow the guidance from the Office of Management and Budget (OMB), and align

with DOD directives and instructions (DOD 2015a, 4–5).

2. Conformance

With the authorities provided, the DOD CIO expects conformance to the DODAF

by DOD components. While the DODAF is developed to be “fit-for-purpose” allowing

sensible flexibility in development of models that meet the architecture at hand, DOD

components must conform to the “maximum extent possible” with the DODAF. This

conformance permits the purpose and objectives of the architecture framework to be

realized: reuse of information, sharing of architecture artifacts, models and viewpoints,

 14

and common understanding of the architecture. Conformance is said to be achieved when

the following two items are met:

 Architecture data is defined using the DODAF Meta Model (DM2) including

the concepts, associations, and attributes

 Transference of the data in accordance with the PES (physical exchange

specification) is achievable (DOD 2015a, 4–5).

B. OVERVIEW: VIEWPOINTS AND MODELS

DODAF 2.02 organizes the framework as models and viewpoints. The models are

the artifacts (diagrams or documents) which describe the aspects of the target architecture

within the viewpoints. The framework allows DOD architects to develop to a set of

standards providing the ability to exchange data among differing system architectures.

DODAF does not dictate the methods and techniques system architects will use;

however, the data created must conform to the DM2 (Department of Defense [DOD]

2015b, 10). There are eight viewpoints as shown in Figure 4.

Figure 4. DODAF has eight viewpoints (from DOD 2015b, 10).

15

A total of 51 models exist within the eight viewpoints. Architects select the

viewpoints and models to develop based on the purpose of their architecture.

Additionally, architects select the methods, techniques, and tools for developing the

architecture artifacts (DOD 2015b, 10). Within the scope of a particular architecture

effort, the overall project/engineering management teams need to follow the same

methods and techniques and use the same tools to realize the benefits of an integrated

architecture. Tables 3–6 describe each model within its viewpoint and the typical

representation used to describe the model.

Table 4. Representations for DODAF 2.02 all, capability, and

data/information viewpoints (Department of Defense, Deputy

Chief Information Officer 2015, 231), (DOD 2015b, 10), and

(Dam 2014).

Model Name/Description Typical

Representation

All Viewpoints

AV-1 Overview and Summary Information - describes a

project’s visions, goals, objectives, plans, activities,

events, conditions, measures, effects (outcomes),

and produced objects.

Structured text

document.

AV-2 Integrated Dictionary - an architectural data

repository with definitions of all terms used

throughout the architectural data and presentations.

Data hierarchy, text

definition with source

reference.

Capability Viewpoints

CV-1 Vision - the overall vision for transformational

endeavors, which provides a strategic context for

the capabilities described and a high-level scope.

Textual descriptions

and relationship

diagrams.

CV-2 Capability Taxonomy - a hierarchy of capabilities

that specifies all the capabilities that are referenced

throughout one or more architectural descriptions.

Structured/hierarchical

list or chart.

16

Model Name/Description Typical

Representation

CV-3 Capability Phasing - the planned achievement of

capability at different points in time or during

specific periods of time.

Table with rows

representing

capabilities (from CV-

1) and columns

representing phases

(from CV-2) or

timeline. Can be

represented

graphically.

CV-4 Capability Dependencies - the dependencies

between planned capabilities and the definition of

logical groupings of capabilities.

Graphical using

connecting lines or

matrix.

CV-5 Capability to Organizational Development

Mapping - the fulfillment of capability

requirements shows the planned capability

deployment and interconnection for a particular

Capability Phase. The CV-5 shows the planned

solution for the phase in terms of performers and

locations and their associated concepts.

Table with

rows/columns

representing

capabilities and

organizations. Can be

represented

graphically.

CV-6 Capability to Operational Activities Mapping - a

mapping between the capabilities required and the

operational activities that those capabilities

support.

Table with

rows/columns

representing

capabilities and

operational activities.

Can be represented

graphically.

CV-7 Capability to Services Mapping - a mapping

between the capabilities and the services that these

capabilities enable.

Table with

rows/columns

representing

capabilities and

services. Can be

represented

graphically.

Data and Information Viewpoints

DIV-1 Conceptual Data Model - the required high-level

data concepts and their relationships.

Graphical

representation to depict

data concepts and

relationships.

 17

Model Name/Description Typical

Representation

DIV-2 Logical Data Model - the documentation of the

data requirements and structural business process

(activity) rules.

Graphical

representation using

appropriate data

modeling methodology

for system.

DIV-3 Physical Data Model - the physical implementation

format of the logical data model entities, e.g.,

message formats, file structures, physical schema.

Graphical

representation using

appropriate data

modeling methodology

for system.

Table 5. Representations for DODAF 2.0 operational and project

viewpoints (Department of Defense, Deputy Chief Information

Officer 2015, 231), (DOD 2015b, 10), and (Dam 2014).

Model Name/Description Typical

Representation

Operational Viewpoints

OV-1 Operational Concept - the high-level

graphical/textual description of the operational

concept.

Graphical

representation of the

architecture. Typically

done in a Microsoft

PowerPoint document

and must include a

textual description.

OV-2 Organizations and Resources - a description of the

resource flows exchanged between operational

activities. Shows a need to exchange information.

Can also show flows of funding, personnel, and

materiel.

Graphical

representation of using

arrows to depict

operational needlines

and resource flows.

OV-3 Operational Resource Flow Matrix - a description

of the resources exchanged and the relevant

attributes of the exchanges.

Table representation.

OV-4 Organizational Relationships Chart - the

organizational context, role or other relationships

among organizations. Used to show roles or actual

organizational constructs.

Graphical

organizational charts.

 18

Model Name/Description Typical

Representation

OV-5a

& OV-

5b

Operational Activity Decomposition Tree - the

capabilities and activities (operational activities)

organized in a hierarchal structure.

Operational Activity Model - The context of

capabilities and activities (operational activities)

and their relationships among activities, inputs, and

outputs. Additional data can show cost, performers,

or other pertinent information.

Activity modeling

methodology of choice,

such as, IDEF0

(Integration Definition

for Function Modeling)

or class diagrams.

OV-6a Operational Rules Model - one of three models

used to describe activity (operational activity). It

identifies business rules that constrain operations.

Statements written in

natural language.

OV-6b State Transition Description - one of three models

used to describe operational activity (activity). It

identifies business process (activity) responses to

events.

Graphical

representation based on

the state chart diagram.

NOTE: helps to

identify behavioral

errors as noted by

DODAF itself!

OV-6c Event-Trace Description - One of three models

used to describe activity (operational activity). It

traces actions in a scenario or sequence of events.

Graphical

representation using

event-trace diagram

methodology of choice,

such as BPMN.

Project Viewpoints

PV-1 Project Portfolio Relationships – describes the

dependency relationships between the

organizations and projects and the organizational

structures needed to manage a portfolio of projects.

Hierarchical

organizational

breakdown.

PV-2 Project Timelines - a timeline perspective on

programs or projects, with the key milestones and

interdependencies.

Graphical

representation. Often a

Gantt chart.

PV-3 Project to Capability Mapping - a mapping of

programs and projects to capabilities to show how

the specific projects and program elements help to

achieve a capability.

Table representation

with rows as

capabilities and

columns for programs,

projects, portfolios, or

initiatives.

 19

Table 6. Representations for DODAF 2.0 services and standards viewpoints

(Department of Defense, Deputy Chief Information Officer 2015,

231), (DOD 2015b, 10), and (Dam 2014).

Model Name/Description Typical

Representation

Services Viewpoints

SvcV-1 Services Context Description - the identification of

services, service items, and their interconnections.

Graphical

representation.

SvcV-2 Services Resource Flow Description - a description

of the resource flows exchanged between services.

Graphical

representation.

SvcV-3a Services-Systems Matrix - the relationships among

or between systems and services in a given

architectural description.

Table representation.

SvcV-

3b

Services-Services Matrix - the relationships among

services in a given architectural description. It can

be designed to show relationships of interest, (e.g.,

service-type interfaces, planned vs. existing

interfaces).

Table representation.

SvcV-4 Services Functionality Description - the functions

performed by services and the service data flows

among service functions (activities).

Graphical

representation.

SvcV-5 Operational Activity to Services Traceability

Matrix - a mapping of services (activities) back to

operational activities (activities).

Table representation.

SvcV-6 Services Resource Flow Matrix - provides details

of service Resource Flow elements being

exchanged between services and the attributes of

that exchange.

Table representation.

SvcV-7 Services Measures Matrix - the measures (metrics)

of Services Model elements for the appropriate

time frame(s).

Table representation.

SvcV-8 Services Evolution Description - the planned

incremental steps toward migrating a suite of

services to a more efficient suite or toward

evolving current services to a future

implementation.

Timeline diagram.

 20

Model Name/Description Typical

Representation

SvcV-9 Services Technology & Skill Forecast - the

emerging technologies, software/hardware

products, and skills that are expected to be

available in a given set of time frames and that will

affect future service development.

Table, timeline, or

herringbone diagram.

SvcV-

10a

Services Rules Model - one of three models used to

describe service functionality. Identifies constraints

that are imposed on systems functionality due to

some aspect of system design or implementation.

Statements written in

natural language.

SvcV-

10b

Services State Transition Description - one of three

models used to describe service functionality.

Identifies responses of services to events.

Graphical

representation based on

the state chart diagram.

SvcV-

10c

Services Event-Trace Description - one of three

models used to describe service functionality.

Identifies service-specific refinements of critical

sequences of events.

Graphical

representation using

event-trace diagram

methodology of choice,

such as BPMN.

Standards Viewpoints

StdV-1 Standards Profile – the listing of standards that

apply.

Text document.

StdV-2 Standards Forecast - the description of emerging

standards and potential impact on current solution

elements, within a set of time frames.

Graphical

representation. Often a

GANTT chart.

Table 7. Representations for DODAF 2.0 systems viewpoints (Department

of Defense, Deputy Chief Information Officer 2015, 231) and

(Dam 2014).

Model Name/Description Typical

Representation

Systems Viewpoints

SV-1 Systems Interface Description - the identification

of systems, system items, and their

interconnections.

Graphical

representation.

 21

Model Name/Description Typical

Representation

SV-2 Systems Resource Flow Description - a description

of the resource flows exchanged between systems.

Graphical

representation.

SV-3 Systems-Systems Matrix - the relationships among

or between systems and services in a given

architectural description.

Table representation.

SV-4 Systems Functionality Description - the functions

performed by systems and the system data flows

among system functions (activities).

Graphical

representation.

SV-5a Operational Activity to Systems Function

Traceability Matrix – a mapping of system

functions (activities) back to operational activities

(activities).

Table representation.

SV-5b Operational Activity to Systems Traceability

Matrix - a mapping of systems (activities) back to

operational activities (activities).

Table representation.

SV-6 Systems Resource Flow Matrix - provides details

of system Resource Flow elements being

exchanged between systems and the attributes of

that exchange.

Table representation.

SV-7 Systems Measures Matrix - the measures (metrics)

of systems model elements for the appropriate time

frame(s).

Table representation.

SV-8 Systems Evolution Description - the planned

incremental steps toward migrating a suite of

systems to a more efficient suite or toward

evolving current systems to a future

implementation.

Timeline diagram.

SV-9 Systems Technology & Skill Forecast - the

emerging technologies, software/hardware

products, and skills that are expected to be

available in a given set of time frames and that will

affect future system development.

Table, timeline, or

herringbone diagram.

SV-10a Systems Rules Model - one of three models used to

describe system functionality. Identifies constraints

that are imposed on systems functionality due to

some aspect of system design or implementation.

Statements written in

natural language.

 22

Model Name/Description Typical

Representation

SV-10b Systems State Transition Description - one of three

models used to describe system functionality.

Identifies responses of system to events.

Graphical

representation based on

the state chart diagram.

SV-10c Systems Event-Trace Description - one of three

models used to describe system functionality.

Identifies system-specific refinements of critical

sequences of events.

Graphical

representation using

event-trace diagram

methodology of choice,

such as BPMN.

Each of the DODAF models above is evaluated against defined criteria to

determine the feasibility of developing MP code and generating an MP model.

C. COMMUNICATING ARCHITECTURES

Architectures and the associated models are an abstraction of the overall system.

Collectively, all the models form the system. In order to effectively communicate an

architecture, systems architects must be able to articulate clearly the models to

stakeholders for their comprehesion, modification, and approval.

In addition to providing standards, interoperability, potential reuse, discipline in

development, and potential cost savings, models communicate the system to its

stakeholders. Stakeholders can include senior leaders, users, engineers, developers,

testers, project managers, financial managers, safety managers, and politicians.

Stakeholders can be internal or external to the developing organization. For example,

system interfaces require cooperation and design consideration from the system

stakeholders.

Architects use models as tools to communicate the system requirements to the

stakeholders for approval, verification, and validation of the system prior to its

implementation. Iterative reviews of the models with the appropriate stakeholders

provide for early discovery and correction of design issues. The models allow

stakeholders to ask “what-if” questions and to identify capability gaps early in the system

life cycle. Without the ability to effectively communicate the architecture, architects

 23

cannot deliver the value associated with producing the architecture and verifying its

feasibility prior to the cost of implementation. Once implementation begins, correcting

architectural issues often requires extensive rework, schedule delays, and cost overruns. It

is common for the DODAF artifacts to be produced as part of the checklist compliance

and then shelved without further consideration.

In the Art of Systems Architecting, Maier and Rechtin (2009, 397) provide a list of

system architecture heuristics. They quote the following heuristic, “One person’s

architecture is another person’s detail. One person’s system is another’s component.

(Robert Spinrad, 1989).” This heuristic provides important guidance when

communicating with others about a complex or system of systems architecture. For each

stakeholder, the architect needs to consider that party’s focus and expertise when

devising an approach for communicating about the architecture models. For example,

every systems team positions their system as the “center of the universe,” with everything

interacting and/or interfacing with it. When architecting any solution, architects need to

understand that there are “mini-architectures” that comprise the whole and impact their

system architecture. Stakeholders of the “mini-architectures” can be threatened by the

development of a new one because it might duplicate functionality or replace their

systems and the communication approach must consider this possibility.

 The accompanying prescriptive heuristic is “In order to understand anything you

must not try to understand everything. (Aristotle, 4th century B.C.)” (Maier and Rechtin

2009). Aristotle’s statement also helps formulate the architecture communication at

digestible levels of detail. Why is this important? The DODAF approach is “fit-for-

purpose,”— not every viewpoint or model needs to be produced if the value of the model

does not fit the architecture under development. Additionally, the models must be

readable in forms that are understandable to the respective stakeholder reviewing the

model. Despite these guidelines, the many systems development projects continue to

create ill-defined, complex, and unverifiable models and represent them as DODAF

viewpoints. As presented to the author, November 17, 2014, by Brian Gregg (pers

comm), Figure 5 is a joint training system SV-2, a systems resource flow description that,

as described in Table 6 above, is a “description of the resource flows exchanged between

 24

systems.” An SV-2 is typically represented graphically; however, it should be a model of

the resource flows between systems. The complexity and inaccurate representation of this

SV-2 makes verification of the exchanged resource flows impossible. For example, in the

yellow box, the “Training Event Manager” and the “Joint Exercise Design Tool” provide

inputs to a composite grouping of six components. These six components have no outputs

and only have inputs coming from other systems. It seems unlikely that none of the six

component systems would produce any output to any other component system.

Additionally, the model includes performers, network details, and implementation details

such as the blue mass behind some of the systems, which represents the intention of these

systems to run in the cloud.

The SV-2 model is an abstraction at the systems level of resources produced and

consumed. Even at this level of abstraction, it is necessary that the model communicate

precision. Any ambiguity found in a high-level model must be corrected for common

understanding with the system stakeholders and implementation team. The MP approach

provides for early model assessments to discover these types of problems and reduce

potential errors before the system design is implemented.

.

 25

Figure 5. Example of a complex, ill-defined, unverifiable DODAF SV-2.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. MONTEREY PHOENIX BEHAVIOR MODELING

APPROACH

A. INTRODUCTION

The struggle to improve software and systems development is well known to

those entrenched in the field including this author. Despite more than a 50-year history of

new methodologies, approaches, and technology advances, software and systems

development remains one of the most challenging areas for product deliveries that are of

high quality, functionally useful, on time and within cost. Yourdon and Argila (1996),

who championed the object oriented analysis and design methods, highlight the history of

software development methods starting with the 1960s waterfall approach that provided

formal methods and processes for developing software. The waterfall approach was an

attempt at preventing ad hoc and chaotic software development. By the 1970s, the

waterfall approach fell out of favor because of the massive amount of documentation

required to proceed to the next phase and the need for quicker development cycles

(Yourdon and Argila 1996).

In the late 1970s, model-based software engineering was introduced in Tom

Demarco’s (Demarco 1979) book, Structured Analysis and System Specification.

According to Demarco, complex software systems should be developed by first creating

models prior to spending resources to implement them (Yourdon and Argila 1996).

Almost forty years later, the software and systems development community is still

working to apply this concept to improve software development.

By 1996, object oriented analysis and design emerged as the newest methodology

for developing software systems. According to Ed Yourdon (Yourdon and Argila 1996)

in his book, Case Studies in Object Oriented Analysis and Design, the principle of

separation of concerns is an important heuristic for model-based software engineering.

Yourdon applies this to the separation of the analysis and design models and this heuristic

is the foundation for his approach (Yourdon and Argila 1996).

 28

Almost ten years ago, service oriented architecture (SOA) hit the information

technology stage with more promises of improving software and system development.

SOA claimed to provide an architectural model intended to provide organizations agility

and cost-effectiveness against the ever-growing liability of information technology

requirements (Erl et al. 2009). Grady Booch notes the following in the forward to

Thomas Erl’s SOA Design Patterns book:

The entire history for software engineering can be characterized as one of

rising levels of abstraction. We see this in our languages, our tools, our

platforms, and our methods. Indeed abstraction is the primary way that we

as humans attend to complexity-and software-intensive systems are among

the most complex artifacts ever created. (Erl 2009, xxxvii)

Another recent trend in software development is the agile methodology using the

scrum process. Agile development uses collaborative, flexible, and iterative methods to

accelerate software development timelines and improve outcomes (INCOSE 2010). Agile

development is paired with the scrum framework, which focuses on complete visibility of

the software development processes (Schwaber 2004). Once again, the software industry

introduced an approach targeted to improve, control, and manage software and systems

development. Ken Schwaber, a co-developer of the scrum process in the early 1990s,

states that “complex problems are those that behave unpredictably” (Schwaber 2004). In

Agile Project Management with Scrum, Schwaber (2004) discusses that scrum is based

on the idea that software should be developed using empirical process control rather than

defined process control—a process that repeatedly produces results of acceptable quality.

The implementation of empirical process control has three tenets: visibility, inspection,

and adaption, which are applied to code development (Schwaber 2004).

No one has yet to find a magical combination of processes, framework, and tools

that can be applied to software and system development efforts to deliver high quality

products, within schedule, and within budget. In the “No Silver Bullet” article, Brooks

(1987) laments that in the upcoming decade there is “no silver bullet.” He specifically

states, “There is no single development, in either technology or in management

technique, that by itself promises even on order-of-magnitude improvement in

productivity, in reliability, in simplicity” (1987, 1). Naval Postgraduate School

 29

researchers have merged the concepts of model-based software engineering, heuristic

based architecture approaches, formal methods, and the use of abstraction to reduce

complexity, and system behaviors to develop the MP approach. While MP is no “silver

bullet,” MP’s simplified set of concepts offers a new lens for managing current system

complexity.

 Per the MP home page, “Monterey Phoenix is a formal architecture description

approach and language for system behavior and process modeling” (NPS 2015). The MP

approach uses a simple event grammar to model software and systems architectures. In

MP, the systems architect models the behaviors for each component and the interactions

between the components are modeled separately as shown in Figure 6. Auguston (2014)

states that, “behavior modeling is the core” of the MP approach. This separation of the

system behaviors from the system interactions enables the MP approach to automatically

generate use case scenarios for human inspection and reveal the unintended behaviors to

the systems architect in a manageable and readily understandable form (Auguston et al.

2012, 1).

MP’s approach to center on the systems behaviors and the interactions among

them enables simplicity of the model by reducing the concepts required to create it

(Auguston et al. 2012, 1). DODAF, for example, has 51 defined models that can be

developed in the method and tool of choice, creating a large number of architectural

concepts, notations, and models to understand and manage across systems. As defined by

its authors, MP, on the other hand, has only three constructs: events that represent

activities executed in the system, and two relationships between events: inclusion and

precedence.

 30

Figure 6. Separation of system behaviors and system interactions.

Events/activities are shown as a1, b1, n1, … a4, b4, n4 (from

Giammarco, Farah-Stapleton, and Auguston 2014).

The guiding principles and advantages of the MP approach change the thought

paradigm most software and systems architects have learned about developing systems.

The first principle is the concept of behavior as the basis for system and software

architecture modeling, rather than modeling components of functionality and the data

flows between them. This approach guides systems developers to consider behaviors and

their interactions (NPS 2015).

The second principle focuses on the importance of the environment behavior in

systems architecture. In MP, there is a single method for modeling the entire system

including its software, hardware, and business processes. This principle enables MP to

generate automatically use cases for inspection and validation exposing possible

unintended behaviors in the interactions with the environment. MP generates the event

traces based on Daniel Jackson’s small scope hypothesis that asserts, “if the analysis

considers all small instances, most flaws will be revealed” (Jackson 2012, 15).

MP provides for executable architectures for assessment through its automatic

generation of use cases, which provides early review of technical requirements. In the

future, MP will include the capability to assess performance, latency, and throughput.

The automatic generation of the use cases provides formal verification and validation

PRIOR to the start of system implementation. Discovery of potential errors or unintended

behaviors early in the system development life cycle can reduce project costs and prevent

schedule delays. The MP prototype, MP Analyzer, generates multiple architectural views

for improved communications with stakeholders with varying perspectives.

 31

Finally, MP fosters reuse of models and is developed to be integrated into existing

industry languages and frameworks, such as UML, SysML, and DODAF. Figure 7 maps

the DODAF meta-model (DM2), unified profile of DODAF and MODAF (UPDM), and

the Lifecyle Modeling Language (LML) concepts to MP concepts (Giammarco and

Auguston 2015c).

 32

Figure 7. Mapping of MP concept s to DM2 UPDM, and LML concepts (from Giammarco and Auguston 2015a).

 33

B. LANGUAGE

A key advantage of the MP approach is the simplicity of its grammar that

revolves around the concept of events. Behavior is represented as a set of events and the

two relationships of inclusion and precedence. Precedence allows modeling of

dependency, and inclusion provides for decomposition. The MP website provides a basic

overview of an event grammar rule and the associated event patterns as shown in Figure

8 and Figure 9.

Figure 8. MP event grammar rule (from Giammarco and Auguston 2015b).

Figure 9. MP event patterns.

 34

A detailed specification of the language is available in Behavior Models for

Software Architecture report (Auguston 2014) and in the Monterey Phoenix System and

Software Architecture Modeling Language report (Auguston 2015). This thesis provides

a brief discussion of the language to provide the reader basic comprehension of how the

MP models are generated for consideration as DODAF models.

MP generates instances of event traces from the grammar rule, which are

visualized to show two types of edges: precedence and inclusion. Boxes represent

events, dotted line arrows represent inclusion, and solid line arrows represent precedence

(Auguston 2014). Figure 11 and Figure 12 show these representations as created in the

MP prototypes.

The MP language uses the ROOT construct to define a root event and the

grammar provides for definition of the set of events included in the root event. For

example, the following code from the SV-2 model defines the root event C2_Systems that

includes two ordered events: send_C2_data and get_TEM_data.

ROOT C2_Systems:

 send_C2_data

 get_TEM_data;

The COORDINATE operation defines the interaction (behaviors) between root

events by using the PRECEDES relation in a loop (DO / OD) for the set of behaviors.

The following code from the SV-2 model first defines another root event, TEM. Next the

COORDINATE operation models the interaction between the C2_Systems and the TEM:

send_C2_data and get_C2_data.

ROOT TEM:

 get_C2_data

 send_TEM_data

 get_vis_data

 get_RDS_data;

COORDINATE

$x: send_C2_data FROM C2_Systems,

 $y: get_C2_data FROM TEM

 DO ADD $x PRECEDES $y; OD;

 35

The event grammar provides the ability to develop common architecture patterns

to develop robust models as shown Figure 10.

Figure 10. MP event patterns and sample event traces (Auguston 2014).

C. MP PROTOTYPES

Initially, a beta tool (Eagle6) was developed to process the MP language and

generate a single graphical display which required manual manipulation of the graph to

view (November 2014). This initial visualization in Eagle6 was difficult to view, modify,

and to use as a communication platform. As of July 2015, Eagle6 generates two

organized visualizations with horizontal and vertical orientations as shown in Figure 11

(Rivera 2009).The Rivera Group and NPS have executed a cooperative research and

development agreement (CRADA) to share NPS source code and update their Eagle6

 36

implementation.

Figure 11. Horizontal and vertical orientation graphs generated from Eagle6, at

the time of this writing.

 The MP project is developing a new tool on a public server called the MP

Analyzer which provides an integrated development environment for MP code

development and three visualizations: force, sequence, and swim lanes as shown Figure

12. The DODAF models evaluated for this thesis were generated using only the MP

Analyzer prototype.

 37

Figure 12. Visualization types available in the MP Analyzer using an example

MP model.

The initial MP Analyzer prototype delivers good functionality for developing MP

models. Basic functionality includes a code editor, a compiler status viewer, graphics

viewer, and a navigation panel shown in Figure 13. The MP Analyzer high-level

functions include:

 ability to view only the code or graphs or to split the view

 ability to import from a set of MP examples or your own MP code base

 ability to export MP code, graphs, and complete models (as file types *.mp or

*.wng)

 ability to increase the scope of your run to generate even traces

 ability to view the compile results including errors

 ability within the editor to highlight syntax errors during input

 38

 ability to generate, zoom in/out, and manipulate three graph types: swim

lanes, sequence, and force

Figure 13. Screenshot from MP Analyzer prototype tool.

MP is an emerging capability designed to shift the way modelers think about

developing system architectures by focusing on the behaviors of the system and their

interactions. The ability to generate DODAF models from the MP prototype provides

near term DODAF compliance for DOD projects and allows modelers to realize the early

benefits of the current MP capabilities. The MP effort is planning on future extensions

that will bring tighter alignment with DODAF models such as event attributes and

assertion checking. Table 7 shows other planned MP enhancements as provided by

Giammarco. (pers comm.)

Table 8. Future planned MP enhancements.

MP Enhancements MP Analyzer Enhancements

Assertion checking and queries

for filtering for particular traces of

interest

Hover over a box or interaction to view attributes

(when attributes have been implemented)

Event attributes such as duration

and probability

Right-click menu for boxes to perform actions, like

upload a picture icon for the box

 39

MP Enhancements MP Analyzer Enhancements

Ability to insert notes in the code

that will print to the diagram (for

debugging purposes)

Click box, highlight corresponding events in the

code

Static model checking Click arrow, highlight corresponding interactions in

the code

Enhanced error reporting and

feedback for debugging

Ability to customize boxes and arrows by color, line

weight and style (e.g., dashes, dots, solid light, solid

heavy)

 Experimental views, such as timelines and Gantt

Charts, and three dimensional and fish-eye

navigation of roots and traces

 Standard views, such as SysML state charts and

activity models (may be left for commercial

implementations)

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. CASE STUDY

A. INTRODUCTION

The DOD faces a long-term, resource-constrained environment that creates

challenges in providing relevant and realistic training to the warfighter in the current

technical environment. Continuing with the delivery of large-scale, resource- and people-

intensive, and centrally located joint training is unsustainable. The joint training

community is addressing this challenge through an enterprise architecture effort, which

modernizes the joint training environment. The current joint training architecture is a

complex, highly federated, and manually integrated system of systems including

programs of record, government off-the-shelf (GOTS), and commercial off-the-shelf

(COTS) capabilities. The modernized architecture addresses this challenge by providing

updated technologies for use by the combatant commands and services to delivery joint

training that is distributed where and when it is needed, tailored to respective missions,

and providing relevant and realistic training content to challenge the force (SPAWAR

Pacific, 2014).

The DODAF 2.0 approach is used to document the modernized joint training

architecture. The effort includes the development of “as-is” and “to-be” architectures.

Figure 14 shows the planned viewpoints for development of the architectures. As the “as-

is” architecture evolved, the OV-5a, 5b models used business process modeling notation

as this method provided the most comprehensive knowledge of the joint training

enterprise. The “to-be” architecture is driving towards a workflow centric solution, which

creates an integrated system-of -systems training environment.

 42

Figure 14. Joint training architecture viewpoints developed using DODAF 2.0

(from SPAWAR Pacific 2014a).

Section II.B, Overview of DODAF Viewpoints and Models, describes the typical

representation used to develop each of the models. The following criteria are established

in this research to determine the baseline set of DODAF models to consider for possible

implementation using MP:

1. The DODAF model is graphically represented;

2. The model has the implementation of precedence relations;

3. The model has the implementation of inclusion relations.

It is not enough for the model to have only a graphical representation; it must also have

precedence and/or inclusion to generate MP visualizations. Given these criteria, Table 8

determines the evaluation status of the DODAF viewpoints and models.

 43

Table 9. Evaluation status of DODAF models for MP approach.

Viewpoints

MP Approach

Models Not Evaluated Models Evaluated

All AV-1, AV-2 None

Capability CV-1,CV-3, CV-4, CV-5,

CV-6, CV-7

CV-2

Data and Information DIV-1, DIV-2, DIV-3 None

Operational OV-1, OV-3, OV-6a OV-2, OV-4, OV-5a, OV-

5b, OV-6b, OV-6c

Project PV-2, PV-3 PV-1

Services SvcV-1, SvcV-3a, SvcV-3b,

SvcV-5, SvcV-6, SvcV-7,

SvcV-8, SvcV-9, SvcV-10a

SvcV-2, SvcV-4, SvcV-

10b, SvcV-10c

Standards StdV-1, StdV-2 None

Systems SV-1, SV-3a, SV-3b, SV-5,

SV-6, SV-7, SV-8, SV-9,

SV-10a

SV-2, SV-4, SV-10b, SV-

10c

B. DERIVED MP MODEL(S)

The following sections detail the conducted research including a description of

the model under analysis, the method of conversion to MP, the MP code, MP

visualizations, and a summary of results. The models evaluated are based on those

identified in Table 8. Since model representations within each DODAF viewpoint are

repeated, only one use case per model type is analyzed.

 44

1. Capability Taxonomy: CV-2

The CV-2 is a hierarchical diagram used to develop taxonomy of capabilities for

the architecture. Figure 15 shows a joint training model of capabilities. The model has six

levels and 30 capabilities. For this research, the area outlined in red is modeled using MP.

Figure 15. Joint training capability taxonomy model (DODAF CV-2) (from

SPAWAR Pacific 2015).

a. Method of Conversion

 Hierarchies are easy to code in MP and there are two approaches

documented in this research. For the first approach, each level is defined as a ROOT with

the capabilities defined as events of the root. The events must exist and no specific order

is required. The MP notation for unordered events is A: {B,C, …Z}. This notation would

exponentially grow the event traces, which is not a desired result for hierarchical

diagrams. However, ordering does make a difference in the readability of the diagram

and is suggested that the modeler pay attention to which events decompose at the next

lower level in arrangement of events in the MP code. Next, the COORDINATE statement

is used to link the events to the levels defined in the ROOT.

The second approach is much simpler and produces a similar hierarchical model.

In this approach, a single ROOT event defines the top level of the hierarchy and the

subsequent levels are nested as events within the single ROOT.

 45

b. CV-2 MP Code

Below the two sets of code developed to model the first three levels and ten

capabilities of the CV-2 use case are shown in Figure 15. Since the events must exist and

no specific order is required, only one trace event is generated.

SCHEMA CV2_CapabilityTaxonomy_Version_One

/* ----------------------LEVELS------------------------- */

ROOT Capability_Taxonomy_Level_0:

 joint_force_development;

ROOT Capability_Taxonomy_Level_1:

 (lessons_learned

 concept_development

 doctrine

 education

 training_and_exercising);

ROOT Capability_Taxonomy_Level_2:

 (individual_joint_training

 tier_1_2_training_events

 tier_3_4_training_events

 modeling_and_simulation);

/* --------------------INTERACTIONS--------------------- */

COORDINATE

$x: joint_force_development FROM

 Capability_Taxonomy_Level_0,

 $y: lessons_learned FROM

 Capability_Taxonomy_Level_1

 DO ADD $x PRECEDES $y; OD;

COORDINATE

 $x: joint_force_development FROM

 Capability_Taxonomy_Level_0,

 $y: concept_development FROM

 Capability_Taxonomy_Level_1

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: joint_force_development FROM

 Capability_Taxonomy_Level_0,

 $y: doctrine FROM

 Capability_Taxonomy_Level_1

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: joint_force_development FROM

 Capability_Taxonomy_Level_0,

 $y: education FROM

 Capability_Taxonomy_Level_1

 46

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: joint_force_development FROM

 Capability_Taxonomy_Level_0,

 $y: training_and_exercising FROM

 Capability_Taxonomy_Level_1

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: training_and_exercising FROM

 Capability_Taxonomy_Level_1,

 $y: individual_joint_training FROM

 Capability_Taxonomy_Level_2

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: training_and_exercising FROM

 Capability_Taxonomy_Level_1,

 $y: tier_1_2_training_events FROM

 Capability_Taxonomy_Level_2

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: training_and_exercising FROM

 Capability_Taxonomy_Level_1,

 $y: tier_3_4_training_events FROM

 Capability_Taxonomy_Level_2

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: training_and_exercising FROM

 Capability_Taxonomy_Level_1,

 $y: modeling_and_simulation FROM

 Capability_Taxonomy_Level_2

 DO ADD $x PRECEDES $y; OD;

Second version of CV-2 MP code:

SCHEMA CV2_Capability_Taxonomy_Version_Two

/* --

 ACTORS

-- */

ROOT joint_force_development:

 lessons_learned

 concept_development

 doctrine

 education

 training_and_exercising;

training_and_exercising: individual_joint_training

 tier_1_2_training_events

 47

 tier_3_4_training_events

c. CV-2 MP Visualizations

Note that the events are linked in the order defined in both sets of code, which is

not necessary for a purely hierarchical diagram. For the version one code, the MP

Analyzer generates three visualizations shown prior to any manual manipulation in

Figure 16. The simpler, nested code (version two) initial and manipulated visualizations

are shown in Figure 18 and Figure 19.

Figure 16. MP Analyzer swim lanes, sequence, and force visualizations for CV-

2, MP code version one.

The resulting MP Analyzer generated swim lane is most easily manipulated for a

comparable DODAF CV-2 visualization as shown in Figure 17.

 48

Figure 17. Manipulated MP CV-2 swim lane visualization, MP code version

one.

The CV-2 MP code version two generates the following results shown in Figure 18.

Figure 18. MP Analyzer swim lanes, sequence and force visualizations for CV-

2, MP code version two.

 49

Each of the above visualizations is easily manipulated for a comparable DODAF

CV-2 visualization as shown in Figure 19.

Figure 19. Manipulated MP CV-2, code version two.

d. CV-2 MP Summary

While this model is easily generated using MP, there are no scenarios that warrant

the analysis of multiple event traces as only the levels of the hierarchy are relevant; the

order of the capabilities within the level typically are not of concern to a modeler.

Additionally, only one of the MP visualizations represents the intent of the model well

and requires manual intervention for optimal display to include exposing the “education”

event, which is initially hidden under the “doctrine” event.

2. Resource Flow Diagrams: OV-2, SvcV-2, and SV-2

The OV-2, SvcV-2, and SV-2 are resource flow diagrams, which show the flow of

resources from one entity to another. To illustrate the conversion of these DODAF

models to MP, analysis is conducted only on a subset of the SV-2 in Figure 5. To

simplify the model and illustrate the conversion to MP, the yellow highlighted area of the

SV-2 is re-created in Figure 20.

 50

Figure 20. Subset of joint training SV-2.

The traditional DODAF model shows resource flows to/from entities; however,

the model does not communicate some simple architectural concerns such as precedence.

Is the precedence of the resource flows important? For example, does the Training Event

Manager (TEM) have to receive something from the C2 Systems prior to being able to

send resources to the Runtime Data System (RDS)? What behaviors are associated with

the resource flows from system to system? Additionally, as previously discussed, the SV-

2 shows that the Six Component Systems (SCS) receive resources from the TEM and

Joint Exercise Design Tool (JEDT), but does not output any resources to any other

system in the SV-2.

a. Method of Conversion

The first step in converting the SV-2 is to make some assumptions about the

resource relationships between the systems in the model. Since the connectors are bi-

directional, the assumption is made that the systems have behaviors (processes) to get and

send data between each other. The second step is to model the processes within each

system required for the flow of resources. The next step is to build the MP code by

defining each system using the ROOT statement, each process as the events in the

ROOT, and defining the interactions of the systems using the COORDINATE statement.

 51

Modeling specific system behaviors is a key principle of the MP approach, particularly

when modeling a system of systems. The updated SV-2, ready for MP code

implementation is shown in Figure 21.

Figure 21. Revised SV-2 model showing the system behaviors.

b. SV-2 MP Code

Below is the code developed to model the revised SV-2 use case shown in Figure

5. The model has seven systems, 20 events, and 14 interactions. The order and

precedence of the events are unknown in this SV-2 and presumed to be set as coded;

therefore, only one trace event is generated.

SCHEMA SystemsView

/* --

 Systems

-- */

ROOT C2_Systems:

 send_C2_data

 52

 get_TEM_data;

ROOT TEM:

 get_C2_data

 send_TEM_data

 get_vis_data

 get_RDS_data;

ROOT Comp_Systems:

 get_TEM_data

 get_JEDT_data;

ROOT JEDT:

 send_JEDT_data

 get_vis_data

 get_RDS_data;

ROOT RDS:

 send_RDS_data

 get_TEM_data

 get_JEDT_data;

ROOT Vis_Systems:

 send_vis_data

 get_TEM_data

 get_JEDT_data

 get_User_data;

ROOT User:

 send_User_data

 get_vis_data;

/* --

 Resource Flows

-- */

COORDINATE $x: send_C2_data FROM C2_Systems,

 $y: get_C2_data FROM TEM

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_TEM_data FROM TEM,

 $y: get_TEM_data FROM C2_Systems

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_TEM_data FROM TEM,

 $y: get_TEM_data FROM Vis_Systems

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_JEDT_data FROM JEDT,

 $y: get_JEDT_data FROM Vis_Systems

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_TEM_data FROM TEM,

 $y: get_TEM_data FROM Comp_Systems

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_JEDT_data FROM JEDT,

 $y: get_JEDT_data FROM Comp_Systems

 DO ADD $x PRECEDES $y; OD;

 53

COORDINATE $x: send_vis_data FROM Vis_Systems,

 $y: get_vis_data FROM User

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_User_data FROM User,

 $y: get_User_data FROM Vis_Systems

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_TEM_data FROM TEM,

 $y: get_TEM_data FROM RDS

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_RDS_data FROM RDS,

 $y: get_RDS_data FROM TEM

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_JEDT_data FROM JEDT,

 $y: get_JEDT_data FROM RDS

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_RDS_data FROM RDS,

 $y: get_RDS_data FROM JEDT

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_vis_data FROM Vis_Systems,

 $y: get_vis_data FROM JEDT

 DO ADD $x PRECEDES $y; OD;

COORDINATE $x: send_vis_data FROM Vis_Systems,

 $y: get_vis_data FROM TEM

 DO ADD $x PRECEDES $y; OD;

c. SV-2 MP Visualizations

Figure 22 and Figure 23 show the three MP visualizations generated from MP

Analyzer.

 54

Figure 22. MP swim lanes and sequence visualizations generated from SV-2.

 55

Figure 23. MP force visualization generated from SV-2.

d. SV-2 (OV-2 and SvcV-2) MP Summary

Resource flow diagrams become complex very quickly and in the use case model

presented here, the logical correctness of this diagram is questionable. Using the MP

approach, the modeler can easily implement the important concerns of the model – the

behaviors between the systems, services, or operational activities. The MP models

provide excellent representation the DODAF SV-2 use case. DODAF OV-2 and SvcV-2

models can also be similarly modeled. An OV-2 emerges from the SV-2 by simply

collapsing the ROOT events in the SV-2 model as seen in Figure 24. Using MP, a single

code instance generates both models.

 56

Figure 24. OV-2 generated from collapse of SV-2 MP ROOT events.

As modeled for this research, only one event trace is generated based on the

known information. However, the systems architect must pursue the answers to the

questions about how the resources actually are intended to flow. Once those answers are

known, multiple event traces emerge.

3. Organizational and Project Relationship Charts: OV-4 and PV-1

Organizational and project relationship charts are hierarchies and can be modeled

in the same approach used for the CV-2 with the same methods and results. For purposes

of this research, only a sample OV-4 is modeled as proof of DODAF to MP generation.

For the OV-4 model, additional analysis is conducted to depict the organizational

“assistant” construct and the usage of the model to communicate not just the role itself,

but quite often, a named individual. An example model, rather than an actual one, was

developed and is shown in Figure 25.

 57

Figure 25. Example OV-4, organizational relationship chart.

a. Method of Conversion

The methods of conversion are identical to those used for the CV-2.

b. OV-4 MP Code

Below is the code developed to model the first four levels and eight

organizational elements of the OV-4 use case shown in Figure 25.

SCHEMA OV4_OrgChart

/* --

Organizational Levels

-- */

ROOT Org_Level_0:

 SeniorExecutive_John_Smith;

ROOT Org_Level_1_Assists:

 (Assist1

Assist2);

ROOT Org_Level_2:

(Director1

 Director2

 Director3);

ROOT Org_Level_3:

 58

 (D1_DeptHead1

 D1_DeptHead2);

/* --

Interactions

-- */

COORDINATE

$x:SeniorExecutive_John_Smith FROM Org_Level_0,

 $y: Assist1 FROM Org_Level_1_Assists

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:SeniorExecutive_John_Smith FROM Org_Level_0,

 $y: Assist2 FROM Org_Level_1_Assists

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:SeniorExecutive_John_Smith FROM Org_Level_0,

 $y: Director1 FROM Org_Level_2

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:SeniorExecutive_John_Smith FROM Org_Level_0,

 $y: Director2 FROM Org_Level_2

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:SeniorExecutive_John_Smith FROM Org_Level_0,

 $y: Director3 FROM Org_Level_2

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: Director1 FROM Org_Level_2,

 $y: D1_DeptHead1 FROM Org_Level_3

 DO ADD $x PRECEDES $y; OD;

COORDINATE
$x: Director1 FROM Org_Level_2,

 $y: D1_DeptHead2 FROM Org_Level_3

 DO ADD $x PRECEDES $y; OD;

c. OV-4 MP Visualizations

The MP model in Figure 26 shows that “assistants” modeled as their own level;

however, the visual distinction of their role is not as clearly defined in the MP model

when compared to a traditional organizational chart.

 59

Figure 26. Manipulated MP Analyzer swim lanes visualization for OV-4.

d. OV-4 and PV-1 MP Summary

The results mirror the ones discussed for the CV-2. Other modeling tools provide

more robust and flexible capabilities for developing organizational and project charts.

However, the data required to generate these DODAF models in MP exists. Additionally,

the PV-1 and PV-2 are tightly coupled as the PV-2 is used to model the project timelines,

tasks, and key milestones and is typically modeled using project scheduling tools and

GANTT charts.

4. Operational Activity Models: OV-5a and OV-5b

An OV-5a is an operational activity decomposition model, which is represented as

a hierarchy and is used to reference the OV-5b. In the use case shown below, the activity

“prepare for the exercise” is decomposed from the OV-5a. The generation of hierarchical

models in MP is shown through the use case research for the DODAF CV-2 and OV-4

models. The OV-5b is an operational activity model diagram that shows relationships

among activities including inputs and outputs. Figure 27 shows the operational activities

for a joint training use case model for the activity “prepare for the exercise.” The OV-5b

has four activities, eleven originating inputs, and eight destination outputs. For this

research, the activities connected by the inputs/outputs highlighted in red are modeled in

MP.

 60

Figure 27. Joint training activity model (OV-5b), prepare for the exercise (from

SPAWAR Pacific 2013).

a. Method of conversion

Activity modeling in MP is straightforward. First, activities from the OV-5b are

represented using the ROOT statement. Next, the data flows of each activity are

described as events of the ROOT. The COORDINATE statement is used to model the

interactions between the ROOT activities. The OV-5b activities are “Input,” “Conduct

Functional Test,” “Conduct Final Planning Conference,” and “Output.” The OV-5b

inputs/outputs are modeled as events of the activities as listed in the ROOT statements of

the OV-5b MP code.

b. OV-5b MP Code

SCHEMA PrepareExercise

/* --

 Activities

-- */

ROOT Input:

 send_budget

 send_initial_database

 send_approved_simulations;

ROOT conduct_functional_test:

 61

 get_budget

 get_approved_simulations

 get_initial_database

 send_event_test2_results;

ROOT conduct_final_planning_conference:

 get_budget

 get_joint_exercise_directive

 get_event_test2_results

 send_force_protection_plan_briefing;

ROOT Output:

 get_force_protection_plan_briefing;

/* --

 INTERACTIONS

-- */

COORDINATE

$x: send_approved_simulations FROM Input,

$y: get_approved_simulations FROM

conduct_functional_test

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_initial_database FROM Input,

 $y: get_initial_database FROM conduct_functional_test

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_budget FROM Input,

 $y: get_budget FROM conduct_functional_test

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_event_test2_results FROM

 conduct_functional_test,

 $y: get_event_test2_results FROM

 conduct_final_planning_conference

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_budget FROM Input,

 $y: get_budget FROM

 conduct_final_planning_conference

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_force_protection_plan_briefing FROM

conduct_final_planning_ conference,

 $y: get_force_protection_plan_briefing FROM Output

 DO ADD $x PRECEDES $y; OD;

 62

c. OV-5b MP Visualizations

Figure 28 and Figure 29 show the three MP visualizations generated from MP

Analyzer.

Figure 28. MP swim lanes and sequence visualizations for OV-5b.

 63

Figure 29. MP force visualization for OV-5b.

d. OV-5b MP Summary

Since behaviors are core to the MP approach, coding activities models in MP is a

natural fit for realizing MP benefits. The MP swim lane and sequence visualizations are

excellent representations of the example OV-5b and are easy to read and interpret. As

modeled for this research, only one event trace is generated. However, since the “Input”

and “Output” activities are actually abstractions for source and destination actors in the

OV-5b, additional modeling work can be performed that would provide further resolution

of the architecture and additional discovery benefits using MP.

5. State Transition Description: OV-6b, SvcV-10b, and SV-10b

The DODAF OV-6b, SvcV-10b, and SV-10b models are represented graphically

as state transition diagrams. State transition diagrams are useful in describing the

behavior of a single object by identifying all of its possible states. State transition

diagrams have the characteristics to be modeled using MP: events, precedence and

inclusion. Figure 30 shows an OV-6b for order processing states.

 64

Figure 30. Order processing state diagram (after Fowler and Scott 1997).

a. Method of Conversion

The state diagram is modeled using one ROOT event to represent the order and a

set of nested events to represent the states and transitions of the order as it is processed.

The order states (checking, waiting, dispatching, cancelled, and delivered) are modeled

and tested first. Next, the state transitions are added to the MP code to incrementally test

the model event trace results. This iterative approach quickly exposed errors with the

model as seen in Figure 31. This event trace reveals an undesirable end state of “waiting”

and the “waiting, item_received, waiting” states occurring after the “cancelled”state. At

scope two, 36 event traces are generated. At scope three, 60 event traces are generated.

 65

Figure 31. Undesirable end state “waiting” discovered in MP event trace.

b. SvcV-10b MP Code

SCHEMA StateDiagram

/*---

 Order Processing State Transition

 Starts at checking order

 Ends at order delivered or order cancelled

---*/

ROOT OrderProcessing: (

 /* Checking State */

 Checking (*Check_Next_Item

Checking*)

 66

 (

 (

 /* Dispatching State */

 All_Items_In_Stock Dispatching

 (

 Order_Cancelled Cancelled |

 Order_Delivered Delivered

)

) |

 (

 /* Waiting State */

 Some_Items_Not_In_Stock Waiting

(*Item_Received Waiting*)

 (

 /* Dispatching State */

 All_Items_Received

Dispatching

 (

 Order_Cancelled Cancelled |

 Order_Delivered Delivered

) |

 Order_Cancelled Cancelled

)

) |

 (

 Order_Cancelled Cancelled

)

)

);

c. SvcV-10b Visualizations

The MP Analyzer sequence visualization provides the best results for the state

transition diagram. At scope one, 18 trace events are generated, at scope two, 36 trace

events are generated, and at scope three, 60 trace events are generated. Each event trace

ends with one of the acceptable end state results: cancelled or delivered. Four of the

event trace sequence visualizations are shown in Figure 32.

 67

Figure 32. Four of 60 event trace sequence visualizations generated in MP

Analyzer for OV-6b.

d. SvcV-10b Summary

The state transition diagram is modeled using only MP nested events and a single

ROOT event to represent the order itself and events to represent the states and the

transitions between the states. The MP Analyzer sequence diagram displays the event

traces without any required manipulations. The transition loops to the state events are

implemented in MP code using the (*A*) zero or more events pattern.

6. Operational, Services and Systems Event-Trace Descriptions: OV-6c,

SvcV-10c, and SV-10c

The OV-6c, SvcV-10c, and SV-10c models are all event trace models. Each of

these models is used to define functionality and sequences of events for operational,

service, or system views. An initial OV-6c use case was developed to explore the

research possibilities for this thesis and the model and corresponding code, visualizations

are available in Appendix B. Baseline DODAF OV-6c . This baseline model generated

 68

only one event trace at scopes one, two, and three when run in MP, which was cause for

concern about the design. Further analysis of the process model revealed gaps in the

design. This model was revised to complete missing design requirements such as such as

parallel processes for notification, process loops for approvals, sub-processes, and

decision gates for mission execution. The OV-6c use case in Figure 33 uses BPMN 2.0 to

model the operational activities in the response mission training process. The design gap

revisions are highlighted in yellow.

Figure 33. Response mission training thread (after SPAWAR Pacific 2014b).

a. Method of Conversion

BPMN 2.0 provides a robust set of constructs to model processes. BPMN 2.0

models can generate business process execution language (BPEL) which can be used in

BPMN engines to simulate or execute the process model. The first step in converting this

model is to map the BPMN 2.0 constructs to the MP approach as shown in Table 9.

 69

Table 10. BPMN 2.0 definitions and mapping to MP (OMG 2011).

BPMN 2.0 BPMN 2.0 Definition MP

Activity (Task,

Transaction,

Event Sub-

Process, Call

Activity)

Work that a company or organization

performs using business processes. An

activity can be atomic or non-atomic

(compound). The types of activities that are

a part of a process model are process, sub-

process, and task.

Events (inclusion and/or

precedence)

Data Object The primary construct for modeling data

within the process.

Events (inclusion and/or

precedence)

End Event An event that indicates where a path in the

process will end.

Events (inclusion and/or

precedence)

Flow

(Sequence,

Default,

Conditional)

A directional connector between elements

in a process.

Interaction between

events (precedence)

Gateways A construct used to route the sequence flow

of events in the process: parallel or

decision based events

Events (inclusion and/or

precedence)

Message Flow A connecting object that shows the flow of

messages between two participants.

Interactions (inclusion

and/or precedence)

Process A sequence or flow of activities in an

organization with the objective of carrying

out work. In BPMN, a process is depicted

as a graph of flow elements, which are a set

of activities, events, gateways, and

sequence flow that adhere to finite

execution semantics.

Series of events

(inclusion and/or

precedence)

Start Event An event that indicates where a particular

process starts.

Events (inclusion and/or

precedence)

Swim lane or

Pool

A swim lane (or lane) is a graphical

container for partitioning a set of activities

from other activities. BPMN has two

different types of swim lanes. Pool or lane

can be an organization, a role, or a system.

Lanes subdivide pools or other lanes

hierarchically.

Root events (inclusion)

 The four swim lanes, National Command Authority, Trainer, Trainee, and

Component Commander were defined as ROOT events. Next, the events in each swim

lane are included in the ROOT events and the parallel events, loops, and decision gates

are coded using the MP grammar. Finally, the interactions between the swim lanes are

coded as interactions using the COORDINATE statement.

 70

The parallel events, shown in Figure 34, with no ordering requirement, (Notify

Commander and Notify Planner) within the ROOT event for the Trainee are easily coded

using the MP grammar: {notify_commander, notify_planner}.

Figure 34. BPMN parallel gateways.

However, an additional event, complete_notifications is added to communicate

that the parallel events finish prior to the start of the next events,

assign_mission_fragmentary_order and the coordinated event, conduct_staff_planning as

shown in Figure 35. The BPMN parallel gateway is modeled as an MP event.

Figure 35. Complete_notifications activity enforces completion of the parallel

tasks.

 71

The MP Analyzer tool requires manual manipulation to separate the parallel

events in the visualization as shown in the before and after in Figure 36.

Figure 36. MP visualizations for parallel events.

The decision gateway also requires additional MP events in order to model the

paths of the decision as interactions between the ROOT events and the conversion was

not as simply made from the BPMN model to the MP code. Loop events, shown in Figure

37, occurring one or more time are modeled using the using the ordered sequence of

event pattern, A: (+B+) and the COORDINATE statement between the ROOT events.

 72

Figure 37. Loop event with decision gateway.

In order to model the BPMN decision gate in MP, events are created to represent

the approval and disapproval activities highlighted in Figure 37.

 73

Figure 38. Modified BPMN model with disapprove and approve activities.

b. OV-6c MP Code – Final

Below is the final code developed to model the modified OV-6c. Since the order

of the parallel events is not relevant for event tracing, the parallel events were combined

for simplicity of the model.

SCHEMA ResponseMissionTraining

/* ---

 ACTORS

--- */

ROOT National_Command_Authority_Sim:

 start

receive_missing_aircraft_notification

receive_satellite_aircraft_imagery

confirm_recovery_need

 order_recovery_mission

 (+ review_recommendation_for_approval

 (approve order_mission_execution |

 disapprove) +) ;

ROOT Trainer_Commander_and_Staff:

 74

 conduct_staff_planning

 (+ review_recommendation +) ;

ROOT Trainee_Watch_Captain:

 receive_recovery_mission_order

 notify_commander_and_planner

 complete_notifications

 assign_mission_fragmentary_order

 receive_confirmation_brief

 create_recommendation

 (+ send_recommendation_for_review

 send_recommendation_for_approval

 (revise_recommendation |

 decides_cancel_the_mission |

 send_mission_order) +) ;

ROOT Component_Commander_Sim:

 receive_fragmentary_order

 conduct_staff_planning

 (+ (commence_mission | abort_mission) +)

 end ;

/* ---

 INTERACTIONS

--- */

COORDINATE

$x: order_recovery_mission FROM

National_Command_Authority_Sim,

 $y: receive_recovery_mission_order FROM

 Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:complete_notifications FROM

 Trainee_Watch_Captain,

 $y: conduct_staff_planning FROM

 Trainer_Commander_and_Staff

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: conduct_staff_planning FROM

 Trainer_Commander_and_Staff,

$y:assign_mission_fragmentary_order FROM

Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:assign_mission_fragmentary_order FROM

Trainee_Watch_Captain,

$y:receive_fragmentary_order FROM

Component_Commander_Sim

 DO ADD $x PRECEDES $y; OD;

 75

COORDINATE

$x: conduct_staff_planning FROM

 Component_Commander_Sim,

 $y: receive_confirmation_brief FROM

 Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:send_recommendation_for_review FROM

Trainee_Watch_Captain,

$y: review_recommendation FROM

Trainer_Commander_and_Staff

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: review_recommendation FROM

 Trainer_Commander_and_Staff,

$y:send_recommendation_for_approval FROM

Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:send_recommendation_for_approval FROM

Trainee_Watch_Captain,

$y: review_recommendation_for_approval FROM

National_Command_Authority_Sim

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: disapprove FROM

 National_Command_Authority_Sim,

$y:(revise_recommendation |

decides_cancel_the_mission) FROM

Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: order_mission_execution FROM

National_Command_Authority_Sim,

 $y: send_mission_order FROM

 Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_mission_order FROM

 Trainee_Watch_Captain,

 $y: commence_mission FROM

 Component_Commander_Sim

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: decides_cancel_the_mission FROM

 Trainee_Watch_Captain,

 76

 $y: abort_mission FROM Component_Commander_Sim

 DO ADD $x PRECEDES $y; OD;

c. OV6-c MP Visualizations

The OV6-c is run in MP Analyzer at scope one, two, and three generating, two,

twelve, and 56 event traces. Only the scope one event traces are shown. The MP

Analyzer sequence diagrams for the approval and disapproval traces are shown in Figure

39 and Figure 40.

 77

Figure 39. MP sequence diagram for approval decision.

 78

Figure 40. MP sequence diagram for disapproval.

 79

Figure 41. MP swim lane diagram for approval event trace one with converged

events (model is split in half for visual representation only).

Figure 42. Corrected MP swim lane diagram for approval event trace (right half

of model is shown for visual representation only).

 80

Figure 43. MP swim lane diagram for disapproval event trace one with

converged events (model is split in half for visual representation

only).

Figure 44. Corrected MP swim lane diagram for disapproval event trace (right

half of model shown for visual representation only).

 81

Figure 45. MP force diagram for approval event trace.

d. OV-6c (SvcV-10c and SV-10c) MP Summary

Business process modeling is a valuable tool for identifying, understanding, and

transforming the activities and information an organization uses to execute its business or

mission. The Object Management Group Business Process Modeling and Notation

(BPMN) website states, “BPMN is targeted at a high level for business users and at a

lower level for process implementers.” The BPMN model is further refined with

implementation details by the systems team (OMG 2011). BPMN is one of the methods

recommended by the DODAF for development of the event trace description models,

which include the OV-6c, SvcV-10c and SV-10c.

Since the core concept for MP is behavior, business process models are a natural

fit for the MP approach. Many organizations embark on the business process modeling

effort with a burst of zealous energy, transforming any willing and available resource into

a business process modeler. As a result, models of all levels of abstraction, complexity,

 82

and logical correctness result from these well-intentioned efforts. As demonstrated with

this use case, the system architect will need to update the process model to resolve

obvious errors and map the BPMN constructs to the MP approach.

The OV6-c, SvcV-10c, and SV-10c models benefit the architecture by providing a

clear advantage in early validation and verification of the model through the generation

of the event traces using the MP approach. The baseline model generated only one event

trace exposing design errors very early, which were corrected with the revised model. At

scope three, MP generates 56 event traces, which provide “immediate, visualized, and

exhaustive feedback for model testing” (Auguston et al. 2015). The ability to generate an

exhaustive set of scenarios within a given scope is unique to the MP approach; existing

BPMN tools cannot guarantee these results according to Giammarco (pers comm.).

7. Services and Systems Functionality Description: SvcV-4/SV-4:

The DODAF SvcV-4 and SV-4 models graphically represent service/system

functions and the data flows between them. In MP, functions and data flows are modeled

as events. Therefore, these two models can be coded and generated in MP by simply

mapping functions and data flows to events. As a use case, the following SvcV-4 is

modeled.

 83

Figure 46. DODAF services functionality description, SvcV-4 (from SPAWAR

Pacific 2015).

a. Method of Conversion

Converting the SvcV-4 to MP is simple and straightforward. First, the root events

are identified: Widget_Library and Widget_Framework. Next, the service functions are

modeled as events in the roots. Finally, the interactions are coded between the two root

events. It is possible to further decompose the events between the functions within the

root; however, this is not required to demonstrate the ability to generate the DODAF

model using MP.

b. SvcV-4 MP Code

Below is the code-developed model the SvcV-4.

SCHEMA SystemView4

/* --

 Events

-- */

ROOT Widget_Library:

 get_search_query

 get_published_widget

 send_widget;

ROOT Widget_Framework:

 84

 send_search_query

 send_published_widget

 ingest_widget;

/* --

 INTERACTIONS

-- */

COORDINATE

$x: send_search_query FROM Widget_Framework,

 $y: get_search_query FROM Widget_Library

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_published_widget FROM

 Widget_Framework,

 $y: get_published_widget FROM Widget_Library

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: send_widget FROM Widget_Library,

 $y: ingest_widget FROM Widget_Framework

 DO ADD $x PRECEDES $y; OD;

c. SvcV-4 MP Visualizations

Figure 47 shows the three MP generated visualizations.

Figure 47. MP swim lanes, sequence, and force visualizations generated from

SvcV-4.

 85

d. SvcV-4 and SV-4 Summary

Since functions are synonymous to events in MP, coding SvcV-4 and SV-4

models in MP is a natural fit for realizing MP benefits. The MP swim lane and sequence

visualizations are excellent representations of the example SvcV-4 and are easy to read

and interpret. As modeled for this research, only one event trace is generated.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

V. CONCLUSIONS

The complexities of today’s systems development efforts demand more effective

methods and approaches to improve successful outcomes. For more than 50 years, the

systems and software development communities have focused on devising methods,

approaches, and frameworks to improve the outcomes. These include the waterfall

approach, spiral development, rapid prototyping, object oriented methodologies, agile

development, scrum techniques, service-oriented architectures, computer-aided software

engineering tools, and, more recently, model based systems engineering. Significant

improvements are simply not being realized. As discussed, MP introduces a new

approach to the mix, and the results of this research reveal much promise for improving

systems development through the simple, early discovery of behaviors through the

generation of an exhaustive set of use cases (trace events).

 This research looks specifically at the ability to use MP-generated models to

satisfy DODAF guidelines for compliance. Generating MP models and realizing the early

benefits of designing only for intended system behaviors while satisfying the DOD

compliance requirements will help socialize the use of the MP approach to DOD program

leaders. This research explores three questions:

 What DODAF viewpoints and models can be derived using the MP

architecture description approach and language?

 What visualizations could be added to the MP prototype, MP Analyzer, to

enhance usage of the MP approach?

 Can DODAF views and models be used to demonstrate the strength of MP to

expose high level design errors and unintended system behaviors?

Using the criteria established in this research, the data available in the MP

approach generates models from five of the eight DODAF viewpoints, for a total of

sixteen of the 51 total DODAF models. The summary of models is shown in Table 10.

 88

Table 11. Summary of DODAF models generated using MP.

Viewpoints DODAF Models Generated from MP

All
None

Capability
CV-2

Data and

Information
None

Operational
OV-2, OV-4, OV-5a, OV-5b, OV-6b, OV-6c

Project
PV-1

Services
SvcV-2, SvcV-4, SvcV-10b, SvcV-10c

Standards
None

Systems
SV-2, SV-4, SV-10b, SV-10c

This research includes a mapping of DODAF concepts and a recommended

method of conversion for each model. Since MP’s strength is behavior modeling, the

generated models focus on workflows and system top-level behavior models, such as the

SV-2, OV-2, SvcV-2, OV-5b, OV-6c, SvcV-10c and the SV-10c.

While MP is able to generate all of the above models, the current MP Analyzer

prototype visualizations are limited. Many other commercial tools present better

graphical visualizations with more robust manipulation capabilities. Modelers may

consider using alternative tools as the MP Analyzer prototype matures. The following

chapter details some recommendations for improved MP visualization capabilities.

Using the MP Analyzer for DODAF model development exposes high-level

design errors and unintended behaviors as demonstrated in the generation of the state

transition diagrams (OV-6b, SvcV-10b, and SV-10b) and the event trace diagrams (OV-

6c, SvcV-10c, and SV-10c). For the order processing state transition model, 36 trace

events are generated at scope two and 60 trace events at scope three. The MP Analyzer

event traces exposed obvious design errors with the process ending in the waiting state

 89

and the “waiting, item_received, waiting” states occurring after the cancelled state as

shown in Figure 48.

Figure 48. Two valid event trace outcomes (cancelled, delivered) and one

invalid outcome (waiting) discovered using the MP Analyzer.

The baseline event trace diagram (OV-6c) research revealed only one event trace

using the MP approach. Analysis conducted from that questionable result identified

 90

design errors resulting in a revised design. The revised event trace diagram (OV-6c),

modeled using BPMN, generates 56 trace events at scope three. The system architect now

has the ability to analyze and determine if all these behaviors are intended results of the

model. No other approach currently provides this ability for early discovery during the

initial system-modeling phase.

Finally, the MP Analyzer is an academic tool that is fully open to the systems

engineering community and MBSE tool vendors. Researchers hope to inspire systems

architects, systems engineers, and industry to adopt the MP approach for its exhaustive

scenario generation on a small scope. The MP approach enables the system architect and

engineer to focus on reducing design complexity while quickly and easily exposing

architectural flaws prior to implementation. The value proposition to DOD programs is

the ability to intercept design errors before they become costly system failures or rework

requirements. With greater adoption of the MP approach, MBSE vendors can extend the

MP capabilities and/or incorporate them in their own tools.

 91

VI. RECOMMENDATIONS

As adoption of the MP approach expands, ease of use will become important

consideration in its acceptance. Some areas for consideration include the usability of the

prototype tool itself, the ability to integrate the capability into commercial tools, and the

training required to develop a cadre of highly skilled MP developers.

As tested for this research, the MP Analyzer tool is a beta prototype. As such,

some early limitations exist with the generation of the visualizations. For example, while

some manual manipulation of auto-generated diagrams is expected, most diagrams

required manual manipulation to uncover stacked events. Although magnification of the

visualizations is available, providing more precision in zooming capability would act as a

quick improvement. The ability to change the colors of model entities and text is also

desirable for mainstream acceptance.

As a prototype, the MP Analyzer tool has a very basic integrated development

environment (IDE). Since the MP approach requires development of code, MP tools that

provide a robust IDE will aid the MP users in the refinement of their code and models.

MP tools should provide some of the following capabilities to make working with MP

more efficient for developing and troubleshooting code:

 ability to store, retrieve, and edit MP code within the IDE (this facilitates

remote development from any location)

 configuration management

 improved error messaging/handling

 improved code editor (auto language indent for ease of nesting code

statements)

 repository of objects names for reuse – this is particularly important to enable

the full traceability of the models (from OV-5a to OV-5b, for example)

 ability to describe/define object names

 ability to share models between modelers

 92

A pilot effort should be considered to incorporate the MP approach, language, and

algorithms in commercial architecture tools. By doing so, the advantages of the MP

language can be realized using the full IDE capabilities of the tool, an integrated

architecture database, collaboration and robust visualizations.

The MP approach is still under development and planned extensions are already

in development. As such, validation and extension of this research will provide on-going

confirmation of the ability to use MP to generate DODAF compliant models. Further

research to study and transform complex system architectures that are struggling to meet

cost, schedule and performance requirements would be invaluable. Such a study will

provide insight on the potential return on investment that can be realized using the MP

approach.

 93

APPENDIX A. SIMPLIFIED MP CODE FOR EXAMPLE

VISUALIZATIONS

The following code was developed as a simplified model from the revised use

case to demonstrate the type of graphical visualizations generated from the MP Analyzer

and Eagle6 prototype tools.

SCHEMA ResponseMissionTraining

/* --

 PERFORMERS (per BPMN swim lanes)

-- */

ROOT National_Command_Authority_Sim:

 start

 receive_missing_aircraft_notification

 order_recovery_mission

 review_recommendation_for_approval

(approve_recommendation |

disapprove_recommendation);

 approve_recommendation:

 order_mission_execution;

ROOT Trainer_Commander_and_Staff:

 conduct_staff_planning

 review_recommendation;

ROOT Trainee_Watch_Captain:

 receive_recovery_mission_order

 complete_notifications

 assign_mission_fragmentary_order;

ROOT Component_Commander_Sim:

 receive_fragmentary_order

 conduct_staff_planning

 commence_mission

 end;

/* --

 INTERACTIONS

-- */

COORDINATE

$x: order_recovery_mission FROM

National_Command_Authority_Sim,

 $y: receive_recovery_mission_order FROM

 Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:complete_notifications FROM

 Trainee_Watch_Captain,

 94

 $y: conduct_staff_planning FROM

 Trainer_Commander_and_Staff

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x: conduct_staff_planning FROM

 Trainer_Commander_and_Staff,

 $y: assign_mission_fragmentary_order FROM

 Trainee_Watch_Captain

 DO ADD $x PRECEDES $y; OD;

COORDINATE

$x:assign_mission_fragmentary_order FROM

 Trainee_Watch_Captain,

 $y: receive_fragmentary_order FROM

 Component_Commander_Sim

 DO ADD $x PRECEDES $y; OD;

 95

APPENDIX B. BASELINE DODAF OV-6C USE CASE

The following BPMN model was used as the initial baseline for demonstrating the conversion of a BPMN model using MP.

This model was modified to conduct research on more complex constructs of BPMN such as the parallel and decision gates.

Figure 49. Baseline joint training business process model developed using BPMN (from SPAWAR Pacific 2014b).

 96

A. BASELINE MP CODE USE CASE

The following visualizations and code were generated from the initial BPMN case

study model shown in Figure 49.

// May 2015

//--

// Response Mission BPMN Model

//

// Baseline Model from Initial Research

// Joanne Pilcher & Kristin Giammarco

//---

ROOT National_Command_Authority:

 receive_notification_of_missing_aircraft

 satellite_imagery_of_aircraft

 confirmation_of_personnel_and_classified_items

 order_recovery_of_personnel_and_classified_items

 receive_recommendation

 order_mission_execution;

ROOT Joint_Task_Force_Commander_and_Staff:

 conduct_staff_planning_subprocess

 commander_and_staff_review;

ROOT Joint_Task_Force_Watch_Captain:

 receive_report_of_missing_aircraft

 receive_tasking_to_conduct_trap

 notify_cdr_and_planners

 assign_mission_via_FRAGO

 receive_confirmation_brief

 forward_confirmation_brief_with_recommendation

 make_recommendation

 pass_on_order

 receive_feedback_and_pass_on_intentions_A

 receive_feedback_and_pass_on_intentions_B

 formulate_and_pass_on_AAR;

ROOT CFMCC:

 receive_FRAGO

 conduct_staff_planning_sub_process

 commence_mission

 start_TRAP_MSEL

 provide_repost_indicating_LZ_secure

 provide_report_of_personnel_material_secure

 report_mission_complete;

//---

// Simulating COORDINATE with SHARE ALL for Eagle6

//---

//COORDINATE

 97

// $x: order_recovery_of_personnel_and_classified_items

// FROM National_Command_Authority,

// $y: receive_report_of_missing_aircraft

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction1:

(*(order_recovery_of_personnel_and_classified_items

receive_report_of_missing_aircraft) *);

National_Command_Authority,Interaction1

SHARE ALL order_recovery_of_personnel_and_classified_items;

Joint_Task_Force_Watch_Captain, Interaction1

SHARE ALL receive_report_of_missing_aircraft;

//COORDINATE

// $x: notify_cdr_and_planners

// FROM Joint_Task_Force_Watch_Captain,

// $y: conduct_staff_planning_subprocess

// FROM Joint_Task_Force_Commander_and_Staff

// DO ADD $x PRECEDES $y OD;

ROOT Interaction2:

(*(notify_cdr_and_planners

conduct_staff_planning_subprocess) *);

Joint_Task_Force_Watch_Captain, Interaction2

SHARE ALL notify_cdr_and_planners;

Joint_Task_Force_Commander_and_Staff, Interaction2

SHARE ALL conduct_staff_planning_subprocess;

//COORDINATE

// $x: conduct_staff_planning_subprocess

// FROM Joint_Task_Force_Commander_and_Staff,

// $y: assign_mission_via_FRAGO

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction3:

(*(conduct_staff_planning_subprocess

assign_mission_via_FRAGO) *);

Joint_Task_Force_Commander_and_Staff, Interaction3

SHARE ALL conduct_staff_planning_subprocess;

Joint_Task_Force_Watch_Captain, Interaction3

SHARE ALL assign_mission_via_FRAGO;

 98

//COORDINATE

// $x: assign_mission_via_FRAGO

// FROM Joint_Task_Force_Watch_Captain,

// $y: receive_FRAGO

// FROM CFMCC

// DO ADD $x PRECEDES $y OD;

ROOT Interaction4:

(* (assign_mission_via_FRAGO receive_FRAGO) *);

Joint_Task_Force_Watch_Captain, Interaction4

SHARE ALL assign_mission_via_FRAGO;

CFMCC, Interaction4

SHARE ALL receive_FRAGO;

//COORDINATE

// $x: conduct_staff_planning_subprocess

// FROM CFMCC,

// $y: receive_confirmation_brief

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction5:

(*(conduct_staff_planning_subprocess

receive_confirmation_brief) *);

CFMCC, Interaction5

SHARE ALL conduct_staff_planning_subprocess;

Joint_Task_Force_Watch_Captain, Interaction5

SHARE ALL receive_confirmation_brief;

//COORDINATE

// $x: forward_confirmation_brief_with_recommendation

// FROM Joint_Task_Force_Watch_Captain,

// $y: commander_and_staff_review

// FROM Joint_Task_Force_Commander_and_Staff

// DO ADD $x PRECEDES $y OD;

ROOT Interaction6:

(*(forward_confirmation_brief_with_recommendation

commander_and_staff_review) *);

Joint_Task_Force_Watch_Captain, Interaction6

SHARE ALL forward_confirmation_brief_with_recommendation;

Joint_Task_Force_Commander_and_Staff, Interaction6

 99

SHARE ALL commander_and_staff_review;

//COORDINATE

// $x: commander_and_staff_review

// FROM Joint_Task_Force_Commander_and_Staff,

// $y: make_recommendation

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction7:

(* (commander_and_staff_reviewmake_recommendation) *);

Joint_Task_Force_Commander_and_Staff, Interaction7

SHARE ALL CDR_and_staff_review;

Joint_Task_Force_Watch_Captain, Interaction7

SHARE ALL make_recommendation;

//COORDINATE

// $x: make_recommendation

// FROM Joint_Task_Force_Watch_Captain,

// $y: receive_recommendation

// FROM National_Command_Authority

// DO ADD $x PRECEDES $y OD;

ROOT Interaction8:

(* (make_recommendation receive_recommendation) *);

Joint_Task_Force_Watch_Captain, Interaction8

SHARE ALL make_recommendation;

National_Command_Authority, Interaction8

SHARE ALL receive_recommendation;

//COORDINATE

// $x: order_mission_execution

// FROM National_Command_Authority,

// $y: pass_on_order

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction9:

(* (order_mission_execution pass_on_order) *);

National_Command_Authority, Interaction9

SHARE ALL order_mission_execution;

Joint_Task_Force_Watch_Captain, Interaction9

 100

SHARE ALL pass_on_order;

//COORDINATE

// $x: pass_on_order

// FROM Joint_Task_Force_Watch_Captain,

// $y: commence_mission

// FROM CFMCC

// DO ADD $x PRECEDES $y OD;

ROOT Interaction10:

(* (pass_on_order commence_mission) *);

Joint_Task_Force_Watch_Captain, Interaction10

SHARE ALL pass_on_order;

CFMCC, Interaction10

SHARE ALL commence_mission;

//COORDINATE

// $x: provide_repost_indicating_LZ_secure

// FROM CFMCC,

// $y: receive_feedback_and_pass_on_intentions_A

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction11:

(*(provide_repost_indicating_LZ_secure

receive_feedback_and_pass_on_intentions_A)*);

CFMCC, Interaction11

SHARE ALL provide_repost_indicating_LZ_secure;

Joint_Task_Force_Watch_Captain, Interaction11

SHARE ALL receive_feedback_and_pass_on_intentions_A;

//COORDINATE

// $x: provide_report_of_personnel_material_secure

// FROM CFMCC,

// $y: receive_feedback_and_pass_on_intentions_B

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction12:

(*(provide_report_of_personnel_material_secure

receive_feedback_and_pass_on_intentions_B) *);

 101

CFMCC, Interaction12

SHARE ALL provide_report_of_personnel_material_secure;

Joint_Task_Force_Watch_Captain, Interaction12

SHARE ALL receive_feedback_and_pass_on_intentions_B;

//COORDINATE

// $x: report_mission_complete

// FROM CFMCC,

// $y: formulate_and_pass_on_AAR

// FROM Joint_Task_Force_Watch_Captain

// DO ADD $x PRECEDES $y OD;

ROOT Interaction13:

(*(report_mission_complete formulate_and_pass_on_AAR)

*);

CFMCC, Interaction13

SHARE ALL report_mission_complete;

Joint_Task_Force_Watch_Captain, Interaction13

SHARE ALL formulate_and_pass_on_AAR;

 102

B. BASELINE MP VISUALIZATIONS FROM EAGLE6

Eagle6, at the time of this writing, generates horizontal and vertical visualizations as shown below for illustrative purposes.

These visualizations are not easy to read and difficult to use as communication tools with stakeholders.

Figure 50. Horizontal Eagle6 visualization.

 103

Figure 51. Vertical Eagle6 visualization.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

LIST OF REFERENCES

Auguston, Mikhail. 2014. Behavior Models for Software Architecture. Monterey, CA:

Naval Postgraduate School.

———. 2015. Monterey Phoenix System and Software Architecture Modeling Language

(Version 2.0). Monterey, CA: Naval Postgraduate School.

Auguston, Mikhail, Kristin Giammarco, W. Clifton Baldwin, Ji’on Crump, and Monica

Farah-Stapleton. 2012. “Controlling Design Complexity with the Monterey

Phoenix Approach.” Washington, DC, Complex Adaptive Systems, 2012.

Auguston, Mikhail, Kristin Giammarco, W. Clifton Baldwin, Ji’on Crump, and Monica

Farah-Stapleton. 2015. “Modeling and Verifying Business Processes with

Monterey Phoenix.” In Lecture Notes in Procedia Computer Science: Vol 44,

2015 Conference on Systems Engineering Research, 345-353. Waltham, MA:

Elsevier B.V.

Blanchard, Benjamin S., and Wolter J. Fabrycky. 2011. Systems Engineering and

Analysis. Upper Saddle River, NJ: Prentice Hall.

Brooks, Frederick P. 1987. “No Silver Bullet, Essence and Accidents of Software

Engineering.” Computer Magazine, April 1987.

Dam, Steven H. 2014. DOD Architecture Framework 2.0. Manassas, VA: SPEC

Innovations.

Defense Acquisition University (DAU). 2015. “7.8. the Clinger-Cohen Act (CCA) --

Subtitle III of Title 40 United States Code (U.S.C.).” July 5.

https://acc.dau.mil/CommunityBrowser.aspx?id=511635#7.8.2.

Demarco, Tom. 1979. Structure Analysis and System Specification. Upper Saddle River,

NJ: Prentice-Hall, Inc.

Department of Defense, Deputy Chief Information Officer. 2004. DOD Architecture

Framework Version 1.0. Washington, D.C.: Department of Defense Chief

Information Officer.

———. 2015. DOD Architecture Framework Version 2.02. Washington, D.C.:

Department of Defense Chief Information Officer.

Department of Defense (DOD). 2015a. DOD Architecture Framework Version 2.02,

Change 1, Volume 1: Overview and Concepts. Washington, D.C.: Department of

Defense Chief Information Officer.

 106

———. 2015b. DOD Architecture Framework Version 2.02, Change 1, Volume 2:

Architecture Data and Models. Washington, D.C.: Department of Defense Chief

Information Officer.

Erl, Thomas. 2009. SOA Design Patterns. Boston, MA: SOA Systems.

Erl, Thomas, Anish Karmarkar, Priscilla Walmsley, Hugo Haas, Umit Yalcinalp,

Canyang Kevin Liu, David Orchard, Andre Tost, and James Pasley. 2009. Web

Service Contract Design and Versioning for SOA. Boston, MA: SOA Systems,.

Fowler, Martin, and Kendall Scott. 1997. UML Distilled, edited by J. Carter Shanklin.

Reading, MA: Addison Wesley Longman.

Giammarco, Kristin, and Auguston, Mikhail. “Monterey Phoenix Concept Mapping.”

Monterey Phoenix Concept Mapping. Naval Postgraduate School, last modified

June 6, 2015, accessed July 2015,

https://wiki.nps.edu/display/MP/Concept+Mapping.

———. “Monterey Phoenix Main Event Grammar.” Monterey Phoenix Main Event

Grammar. Naval Postgraduate School, last modified June 6, 2015, accessed July

2015, https://wiki.nps.edu/display/MP/Event+Grammar.

———. “Monterey Phoenix Main Principles and Advantages.” Monterey Phoenix Main

Principles and Advantages. Naval Postgraduate School, last modified June 6,

2015, accessed July, 2015,

https://wiki.nps.edu/display/MP/Main+Principles+and+Advantages.

Giammarco, Kristin, Monica Farah-Stapleton, and Mikhail Auguston. 2014. Behavioral

Modeling of System Architecture with Monterey Phoenix. Monterey, CA: Naval

Postgraduate School.

INCOSE. 2010. Systems Engineering Handbook, A Guide for System Life Cycle

Processes and Activities, edited by Cecilia Haskins. San Diego, CA: International

Council on Systems Engineering.

Jackson, Daniel. 2012. Software Abstractions. Cambridge, MA: The MIT Press.

Langford, Gary O. 2012. Engineering Systems Integration. Boca Raton, FL: CRC Press.

Maier, Mark W., and Eberhardt Rechtin. 2009. The Art of Systems Architecting. Boca

Raton, FL: CRC Press.

NPS. “Monterey Phoenix Home.” Monterey Phoenix., last modified June 6, 2015,

accessed July, 2015, https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home.

107

Object Management Group (OMG). 2011. Object Management Group. “Documents

Associated with Business Process Model and Notation (BPMN) Version 2.0:

Object Management Group.

Rivera. “Run Eagle6 Beta,” accessed July, 2015, http://eagle6modeling.riverainc.com/.

Schwaber, Ken. 2004. Agile Project Management with Scrum. Redmond, WA: Microsoft

Press.

Sowell, Kathie P. 2006. The C4ISR Architecture Framework: History, Status, and Plans

for Evolution. McLean, VA: MITRE.

SPAWAR Pacific. “Joint Training Enterprise Architecture: As-Is. Model.” San Diego,

CA: Space and Naval Warfare Systems Center Pacific.

———. “Joint Training Enterprise Architecture: Systems Engineering Plan.” San Diego,

CA: Space and Naval Warfare Systems Center Pacific.

———. “Joint Training Enterprise Architecture: To-be, Increment 3.” San Diego, CA:

Space and Naval Warfare Systems Center Pacific.

———. “Simulation Exercise: Rapid Response Mission Workflow.” Business Process

Model.

Vaneman, Warren, 2015. “Introduction to Systems Architectures.” In Lecture, Naval

Postgraduate School, Monterey, CA, October 2.

Yourdon, Edward, and Carl Argila. 1996. Case Studies in Object Oriented Analysis &

Design. Upper Saddle River, NJ: Prentice-Hall.

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

